scholarly journals Anti-CD20 treatment effectively attenuates cortical pathology in a rat model of widespread cortical demyelination

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Michaela T. Haindl ◽  
Muammer Üçal ◽  
Benjamin Klaus ◽  
Lennart Tögl ◽  
Jana Dohrmann ◽  
...  

Abstract Background Cortical demyelination represents a prominent feature of the multiple sclerosis (MS) brain, especially in (late) progressive stages. We recently developed a new rat model that reassembles critical features of cortical pathology characteristic to progressive types of MS. In persons affected by MS, B-cell depleting anti-CD20 therapy proved successful in the relapsing remitting as well as the early progressive course of MS, with respect to reducing the relapse rate and number of newly formed lesions. However, if the development of cortical pathology can be prevented or at least slowed down is still not clear. The main goal of this study was thus to increase our understanding for the mode of action of B-cells and B-cell directed therapy on cortical lesions in our rat model. Methods For this purpose, we set up two separate experiments, with two different induction modes of B-cell depletion. Brain tissues were analyzed thoroughly using histology. Results We observed a marked reduction of cortical demyelination, microglial activation, astrocytic reaction, and apoptotic cell loss in anti-CD20 antibody treated groups. At the same time, we noted increased neuronal preservation compared to control groups, indicating a favorable impact of anti-CD20 therapy. Conclusion These findings might pave the way for further research on the mode of action of B-cells and therefore help to improve therapeutic options for progressive MS.

2021 ◽  
Author(s):  
Michaela T Haindl ◽  
Muammer Üçal ◽  
Benjamin Klaus ◽  
Lennart Tögl ◽  
Jana Dohrmann ◽  
...  

Abstract BackgroundCortical demyelination represents a prominent feature of the multiple sclerosis (MS) brain, especially in (late) progressive stages. We recently developed a new rat model that reassembles critical features of cortical pathology characteristic to progressive types of MS. In persons affected by MS, B-cell depleting anti-CD20 therapy proved successful in the relapsing remitting as well as the early progressive course of MS, with respect to reducing the relapse rate and number of newly formed lesions. However, if the development of cortical pathology can be prevented or at least slowed down is still not clear. The main goal of this study was thus to increase our understanding for the mode of action (MOD) of B-cells and B-cell directed therapy on cortical lesions in our rat model. MethodsFor this purpose, we set up two separate experiments, with two different induction modes of B-cell depletion. Brain tissues were analyzed thoroughly using histology. ResultsWe observed a marked reduction of cortical demyelination, microglial activation, astrocytic reaction and apoptotic cell loss in anti-CD20 antibody treated groups. At the same time, we noted increased neuronal preservation compared to control groups, indicating a favorable impact of anti-CD20 therapy. ConclusionThese findings might pave the way for further research on the MOD of B-cells and therefore help to improve therapeutic options for progressive MS.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2784-2794 ◽  
Author(s):  
KA Jacobsen ◽  
VS Prasad ◽  
CL Sidman ◽  
DG Osmond

Abstract Transgenic mice expressing the c-myc proto-oncogene under the control of the Ig heavy chain enhancer (E mu-myc) all eventually develop clonal pre-B- or B-cell tumors. The preneoplastic period is characterized by increased polyclonal proliferation of pro-B and pre-B cells in the bone marrow (BM) associated with a reduced number of B cells, suggesting a high degree of B-cell loss. To examine the mechanisms of this cell loss, we have identified B220+ B-lineage cells within the BM of pretumorous E mu-myc transgenic mice by in vivo radiolabeling and electron microscope radioautography. Large mitotic B220(+)-labeled cells form prominent clusters in the extravascular compartment of the BM. Some B220+ small lymphocytes, as well as large lymphoid cells, enter BM sinusoids. However, in addition, large numbers of B220+ cells exhibit nuclear chromatin condensation, fragmentation, and other morphologic features characteristic of apoptotic cell death. Propidium iodide staining and flow cytometry of BM cells from pretumorous E mu- myc transgenic mice, as well as agarose gel electrophoresis of DNA, confirm extensive apoptosis. Many B220+ apoptotic cells are closely associated with the extensive processes of prominent macrophages that contain numerous B220+ apoptotic bodies and complex lysosomal systems. These results suggest that the constitutive expression of c-myc oncogene in BM B-lineage cells, which increases the proliferation of precursor B cells, also leads to increased apoptotic cell death and rapid elimination by resident macrophages. Further mutations may be needed to block these protective mechanisms and permit surviving c-myc- dysregulated cells to leave the BM and to initiate tumorigenesis.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2784-2794 ◽  
Author(s):  
KA Jacobsen ◽  
VS Prasad ◽  
CL Sidman ◽  
DG Osmond

Transgenic mice expressing the c-myc proto-oncogene under the control of the Ig heavy chain enhancer (E mu-myc) all eventually develop clonal pre-B- or B-cell tumors. The preneoplastic period is characterized by increased polyclonal proliferation of pro-B and pre-B cells in the bone marrow (BM) associated with a reduced number of B cells, suggesting a high degree of B-cell loss. To examine the mechanisms of this cell loss, we have identified B220+ B-lineage cells within the BM of pretumorous E mu-myc transgenic mice by in vivo radiolabeling and electron microscope radioautography. Large mitotic B220(+)-labeled cells form prominent clusters in the extravascular compartment of the BM. Some B220+ small lymphocytes, as well as large lymphoid cells, enter BM sinusoids. However, in addition, large numbers of B220+ cells exhibit nuclear chromatin condensation, fragmentation, and other morphologic features characteristic of apoptotic cell death. Propidium iodide staining and flow cytometry of BM cells from pretumorous E mu- myc transgenic mice, as well as agarose gel electrophoresis of DNA, confirm extensive apoptosis. Many B220+ apoptotic cells are closely associated with the extensive processes of prominent macrophages that contain numerous B220+ apoptotic bodies and complex lysosomal systems. These results suggest that the constitutive expression of c-myc oncogene in BM B-lineage cells, which increases the proliferation of precursor B cells, also leads to increased apoptotic cell death and rapid elimination by resident macrophages. Further mutations may be needed to block these protective mechanisms and permit surviving c-myc- dysregulated cells to leave the BM and to initiate tumorigenesis.


2020 ◽  
Vol 117 (41) ◽  
pp. 25690-25699
Author(s):  
Nitzan Nissimov ◽  
Zivar Hajiyeva ◽  
Sebastian Torke ◽  
Katja Grondey ◽  
Wolfgang Brück ◽  
...  

B cell depletion via anti-CD20 antibodies is a highly effective treatment for multiple sclerosis (MS). However, little is known about the maturation/activation stage of the returning B cell population after treatment cessation and the wider effects on other immune cells. In the present study, 15 relapsing-remitting MS patients receiving 1,000 mg of rituximab were included. B, T, and myeloid cells were analyzed before anti-CD20 administration and in different time intervals thereafter over a period of 24 mo. In comparison to the phenotype before anti-CD20 treatment, the reappearing B cell pool revealed a less mature and more activated phenotype: 1) reappearing B cells were significantly enriched in transitional (before: 10.1 ± 1.9%, after: 58.8 ± 5.2%) and mature naive phenotypes (before: 45.5 ± 3.1%, after: 25.1 ± 3.5%); 2) the frequency of memory B cells was reduced (before: 36.7 ± 3.1%, after: 8.9 ± 1.7%); and 3) reappearing B cells showed an enhanced expression of activation markers CD25 (before: 2.1 ± 0.4%, after: 9.3 ± 2.1%) and CD69 (before: 5.9 ± 1.0%, after: 21.4 ± 3.0%), and expressed significantly higher levels of costimulatory CD40 and CD86. T cells showed 1) a persistent increase in naive (CD4+: before: 11.8 ± 1.3%, after: 18.4 ± 3.4%; CD8+: before: 12.5 ± 1.4%, after: 16.5 ± 2.3%) and 2) a decrease in terminally differentiated subsets (CD4+: before: 47.3 ± 3.2%, after: 34.4 ± 3.7%; CD8+: before: 53.7 ± 2.1%, after: 49.1 ± 2.7%).


2021 ◽  
Vol 27 ◽  
Author(s):  
Anja Steinmaurer ◽  
Isabella Wimmer ◽  
Thomas Berger ◽  
Paulus Stefan Rommer ◽  
Johann Sellner

: Significant progress has been made in understanding the immunopathogenesis of multiple sclerosis (MS) over recent years. Successful clinical trials with CD20-depleting monoclonal antibodies have corroborated the fundamental role of B cells in the pathogenesis of MS and reinforced the notion that cells of the B cell lineage are an attractive treatment target. Therapeutic inhibition of Bruton's tyrosine kinase (BTK), an enzyme involved in B cell and myeloid cell activation and function, is regarded as a next-generation approach that aims to attenuate both errant innate and adaptive immune functions. Moreover, brain-penetrant BTK inhibitors may impact compartmentalized inflammation and neurodegeneration within the central nervous system by targeting brain-resident B cells and microglia, respectively. Preclinical studies in animal models of MS corroborated an impact of BTK inhibition on meningeal inflammation and cortical demyelination. Notably, BTK inhibition attenuated the antigen-presenting capacity of B cells and the generation of encephalitogenic T cells. Evobrutinib, a selective oral BTK inhibitor, has been tested recently in a phase 2 study of patients with relapsing-remitting MS. The study met the primary endpoint of a significantly reduced cumulative number of Gadolinium-enhancing lesions under treatment with evobrutinib compared to placebo treatment. Thus, the results of ongoing phase 2 and 3 studies with evobrutinib, fenobrutinib, and tolebrutinib in relapsing-remitting and progressive MS are eagerly awaited. This review article introduces the physiological role of BTK, summarizes the pre-clinical and trial evidence, and addresses the potential beneficial effects of BTK inhibition in MS.


Author(s):  
Daniel E Eldridge ◽  
Charlie C Hsu

Murine norovirus (MNV), which can be used as a model system to study human noroviruses, can infect macrophages/monocytes, neutrophils, dendritic, intestinal epithelial, T and B cells, and is highly prevalent in laboratory mice. We previouslyshowed that MNV infection significantly reduces bone marrow B cell populations in a Stat1-dependent manner. We show here that while MNV-infected Stat1−/− mice have significant losses of bone marrow B cells, splenic B cells capable of mounting an antibody response to novel antigens retain the ability to expand. We also investigated whether increased granulopoiesis after MNV infection was causing B cell loss. We found that administration of anti-G-CSF antibody inhibits the pronounced bone marrow granulopoiesis induced by MNV infection of Stat1−/− mice, but this inhibition did not rescue bone marrow B cell losses. Therefore, MNV-infected Stat1−/− mice can still mount a robust humoral immune response despite decreased bone marrow B cells. This suggests that further investigation will be needed to identify other indirect factors or mechanisms that are responsible for the bone marrow B cell losses seen after MNV infection. In addition, this work contributes to our understanding of the potential physiologic effects of Stat1-related disruptions in research mouse colonies that may be endemically infected with MNV.


Blood ◽  
2010 ◽  
Vol 115 (25) ◽  
pp. 5191-5201 ◽  
Author(s):  
Stephen A. Beers ◽  
Ruth R. French ◽  
H. T. Claude Chan ◽  
Sean H. Lim ◽  
Timothy C. Jarrett ◽  
...  

Abstract Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcγ receptor–expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


Author(s):  
Thomas Dörner ◽  
Peter E. Lipsky

B cells have gained interest in rheumatoid arthritis (RA) beyond being the precursors of antibody-producing plasma cells since they are also a broader component of the adaptive immune system. They are capable of functioning as antigen-presenting cells for T-cell activation and can produce an array of cytokines. Disturbances of peripheral B-cell homeostasis together with the formation of ectopic lymphoid neogenesis within the inflamed synovium appears to be a characteristic of patients with RA. Enhanced generation of memory B cells and autoreactive plasma cells producing IgM-RF and ACPA-IgG antibodies together with formation of immune complexes contribute to the maintenance of RA, whereas treatment with B-cell-directed anti-CD20 and CLTA4-Ig therapy provides clinical benefit.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2838-2838
Author(s):  
Angela D Hamblin ◽  
Ben CR King ◽  
Ruth R French ◽  
Claude H Chan ◽  
Alison L Tutt ◽  
...  

Abstract Abstract 2838 To circumvent cytotoxic T lymphocyte (CTL) tolerance of tumour-associated antigens, the concept of redirecting CTLs against non-cognate targets has developed. One way of doing this is to use bispecific antibodies comprising anti-CD3 and anti-tumour antigen moieties. Unfortunately, this is frequently associated with unacceptable toxicity due to inflammatory cytokine release. As an alternative our approach has been to use a bivalent conjugate recognising a tumour antigen (through an antibody fragment) and a defined population of CTLs (specific for a single antigenic peptide e.g. viral epitope) through peptide presented in the context of recombinant MHC class I. We have produced a conjugate consisting of an anti-human CD20 Fab' fragment joined via a chemical crosslinker (succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate) to murine MHC class I/peptide (Kbα1-α3 domains/β2microglobulin presenting the ovalbumin-derived peptide SIINFEKL; expressed bacterially as a continuous polypeptide single chain trimer after Yu et al, J Immunol 2002). Size exclusion chromatography allowed purification of conjugates with [Fab':MHC class I/peptide] ratios of 1:1 and 2:1 (F2 and F3 respectively). In vitro both constructs were able to redirect the transgenic murine CTL line OT-1 (specific for KbSIINFEKL) to lyse human CD20+ tumour cells (lymphoblastoid Daudi cell line) at effector: target ratios of 10:1. This lysis could be blocked by the addition of 100 fold excess of either anti-CD20 F(ab')2 or the Kb/SIINFEKL-specific antibody 25D1. The constructs were also able to cause in vitro proliferation of naïve OT-1 cells (but not irrelevant CD8+ T cells) in the presence of human CD20+ cells in both thymidine incorporation and CFSE dilution assays. Using a human CD20 transgenic mouse model (Ahuja et al, J Immunol 2007) we have evaluated both constructs in vivo for their ability to redirect adoptively transferred OT-1 cells to deplete B cells from the peripheral blood. A single dose of 1 nmole F3 and 2 nmole F2 caused respectively up to 95% and 85% B cell depletion at day 7. The efficacy of lower doses suggested a dose: response relationship. As a marker of toxicity, we have measured cytokine levels at 2, 8 and 24 hours following a dose of 1 nmole F3 and compared them to those seen after administration of an [anti-CD3 × anti-CD20] bispecific F(ab')2 at a dose (0.5 nmole) which produced similar day 7 peripheral blood B cell depletion: phosphate-buffered saline was given as a negative control. Maximal cytokine release was seen at 2 hours with the levels of IL-4, IL-5, KC, IL-2 and IL-10 being lower after administration of the F3 than after the bispecific F(ab')2. However, interestingly, the F3 resulted in greater IL-12 release. Overall these data suggest that [Fab' × MHC class I/peptide] constructs have the potential to redirect non-cognate CTLs to deplete CD20+ malignant B cells from the peripheral blood and that this is associated with a lower level of cytokine release than a similarly efficacious dose of an anti-CD3-containing bispecific F(ab')2. Furthermore, the ability of [Fab' × MHC class I/peptide] constructs to cause proliferation of OT-1 cells in vitro suggests it may be possible to use a single molecule to both generate a secondary cytotoxic T cell response and subsequently to retarget it, increasing the viability of the approach if adopted in the clinic. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document