scholarly journals Age-dependency of terminal ileum tissue resident memory T cell responsiveness profiles to S. Typhi following oral Ty21a immunization in humans

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jayaum S. Booth ◽  
Eric Goldberg ◽  
Seema A. Patil ◽  
Robin S. Barnes ◽  
Bruce D. Greenwald ◽  
...  

Abstract Background The impact of aging on the immune system is unequivocal and results in an altered immune status termed immunosenescence. In humans, the mechanisms of immunosenescence have been examined almost exclusively in blood. However, most immune cells are present in tissue compartments and exhibit differential cell (e.g., memory T cells -TM) subset distributions. Thus, it is crucial to understand immunosenescence in tissues, especially those that are exposed to pathogens (e.g., intestine). Using a human model of oral live attenuated typhoid vaccine, Ty21a, we investigated the effect of aging on terminal ileum (TI) tissue resident memory T (TRM) cells. TRM provide immediate adaptive effector immune responsiveness at the infection site. However, it is unknown whether aging impacts TRMS. Typhi-responsive cells at the site of infection (e.g., TI). Here, we determined the effect of aging on the induction of TI S. Typhi-responsive TRM subsets elicited by Ty21a immunization. Results We observed that aging impacts the frequencies of TI-lamina propria mononuclear cells (LPMC) TM and TRM in both Ty21a-vaccinated and control groups. In unvaccinated volunteers, the frequencies of LPMC CD103- CD4+ TRM displayed a positive correlation with age whilst the CD4/CD8 ratio in LPMC displayed a negative correlation with age. We observed that elderly volunteers have weaker S. Typhi-specific mucosal immune responses following Ty21a immunization compared to adults. For example, CD103+ CD4+ TRM showed reduced IL-17A production, while CD103- CD4+ TRM exhibited lower levels of IL-17A and IL-2 in the elderly than in adults following Ty21a immunization. Similar results were observed in LPMC CD8+ TRM and CD103- CD8+ T cell subsets. A comparison of multifunctional (MF) profiles of both CD4+ and CD8+ TRM subsets between elderly and adults also showed significant differences in the quality and quantity of elicited single (S) and MF responses. Conclusions Aging influences tissue resident TMS. Typhi-specific responses in the terminal ileum following oral Ty21a-immunization. This study is the first to provide insights in the generation of local vaccine-specific responses in the elderly population and highlights the importance of evaluating tissue immune responses in the context of infection and aging. Trial registration This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifierNCT03970304, Registered 29 May 2019 - Retrospectively registered).

2015 ◽  
Vol 61 (4) ◽  
pp. 329-335
Author(s):  
Wilson de Melo Cruvinel ◽  
Danilo Mesquita Júnior ◽  
Júlio Antônio Pereira Araújo ◽  
Karina Carvalho Samazi ◽  
Esper Georges Kállas ◽  
...  

SummaryIntroduction:aging is associated with several immunologic changes. Regulatory (Treg) and effector T cells are involved in the pathogenesis of infectious, neoplastic, and autoimmune diseases. Little is known about the effects of aging on the frequency and function of these T cell subpopulations.Methods:peripheral blood mononuclear cells (PBMC) were obtained from 26 young (under 44 years old) and 18 elderly (above 80 years old) healthy women. T cell subpopulations were analyzed by flow cytometry.Results:elderly individuals had lower frequency of several activated effector T cell phenotypes as compared with young individuals: CD3+CD4+CD25+ (3.82±1.93 versus 9.53±4.49; p<0.0001); CD3+CD4+CD25+CD127+(2.39±1.19 versus 7.26±3.84; p<0.0001); CD3+CD4+CD25+ (0.41±0.22 versus 1.86±0.85, p<0.0001); and CD3+CD4+CD25highCD127+(0.06±0.038 versus 0.94±0.64, p<0.0001). Treg (CD3+CD4+CD25+CD127øFoxp3+) presented lower frequency in elderly individuals as compared to young adults (0.34±0.18 versus 0.76±0.48; p=0.0004) and its frequency was inversely correlated with age in the whole group (r=-0.439; p=0.013). The elderly group showed higher frequency of two undefined CD25øFoxp3+ phenotypes: CD3+CD4+CD25øFoxp3+(15.05±7.34 versus 1.65±1.71; p<0.0001) and CD3+CD4+CD25øCD127øFoxp3+(13.0±5.52 versus 3.51±2.87; p<0.0001).Conclusions:the altered proportion of different T cell subsets herein documented in healthy elderly women may be relevant to the understanding of the immunologic behavior and disease susceptibility patterns observed in geriatric patients.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Leslie P. Cousens ◽  
Yan Su ◽  
Elizabeth McClaine ◽  
Xin Li ◽  
Frances Terry ◽  
...  

HLA class II-restricted regulatory T cell (Treg) epitopes in IgG (also called “Tregitopes”) have been reported to suppress immune responses to coadministered antigens by stimulating the expansion of natural Tregs (nTregs). Here we evaluate their impact on human immune responses to islet cell antigensex vivoand on the modulation of type 1 diabetes (T1D) in a murine modelin vivo. Co-administration of Tregitopes and T1D antigens delayed development of hyperglycemia and reduced the incidence of diabetes in NOD mice. Suppression of diabetes could be observed even following onset of disease. To measure the impact of Tregitope treatment on T cell responses, we evaluated the effect of Tregitope treatment in DO11.10 mice. Upregulation of FoxP3 in KJ1-26-stained OVA-specific CD4+T cells was observed following treatment of DO11.10 mice with Tregitopes, along with reductions in anti-OVA Ig and T effector responses. Inex vivostudies of human T cells, peripheral blood mononuclear cells’ (PBMC) responses to GAD65 epitopes in the presence and absence of Tregitope were variable. Suppression of immune responses to GAD65 epitopesex vivoby Tregitope appeared to be more effective in assays using PBMC from a newly diagnosed diabetic subject than for other more established diabetic subjects, and correlation of the degree of suppression with predicted HLA restriction of the Tregitopes was confirmed. Implementation of these defined regulatory T cell epitopes for therapy of T1D and other autoimmune diseases may lead to a paradigm shift in disease management.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1232
Author(s):  
Natalia Teresa Jarzebska ◽  
Julia Frei ◽  
Severin Lauchli ◽  
Lars E. French ◽  
Emmanuella Guenova ◽  
...  

The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.


2006 ◽  
Vol 65 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Bruno Lesourd

Undernutrition profoundly affects immune responses, particularly at the extremities of life: in infants and in the elderly. The present review focuses on this interrelationship in the elderly. It describes three different stages of ageing: stage 1, healthy ageing, which is observed in very healthy elderly individuals who have no nutritional deficit; stage 2, common ageing, which is observed in most elderly individuals in whom various micronutrient deficits are found; stage 3, pathological ageing, which is observed in patients with protein–energy deficiency. Stage 1, primary immune ageing, is essentially characterized by changes in T-cell subsets but no change in T-cell function; T-cell function is reduced only in the very elderly (>90 years old). Stage 2, secondary immune ageing, is influenced by micronutrient deficits that may be corrected by providing nutritional supplements. Furthermore, immune responses may also be enhanced by supplementation of subjects who have no micronutrient deficits, indicating that the immune system of elderly individuals is highly susceptible to the influence of micronutrients. In stage 3, tertiary immune ageing, the immune responses are strongly related to the decreased nutritional status. In these patients decreased immune responses lead to long-lasting acute-phase responses, which induce greater use of nutritional reserves during disease and lead to increased frailty. As nutritional status has a marked effect on immune responses in elderly individuals, nutritional therapy should be given to elderly individuals who have nutrient deficits, and perhaps also to individuals who do not have nutrient deficits in order to promote healthy ageing and extend the lifespan.


Author(s):  
Kanda Sornkayasit ◽  
Amonrat Jumnainsong ◽  
Wisitsak Phoksawat ◽  
Wichai Eungpinichpong ◽  
Chanvit Leelayuwat

The beneficial physiological effects of traditional Thai massage (TTM) have been previously documented. However, its effect on immune status, particularly in the elderly, has not been explored. This study aimed to investigate the effects of multiple rounds of TTM on senescent CD4+ T cell subsets in the elderly. The study recruited 12 volunteers (61–75 years), with senescent CD4+ T cell subsets, who received six weekly 1-h TTM sessions or rest, using a randomized controlled crossover study with a 30-day washout period. Flow cytometry analysis of surface markers and intracellular cytokine staining was performed. TTM could attenuate the senescent CD4+ T cell subsets, especially in CD4+28null NKG2D+ T cells (n = 12; p < 0.001). The participants were allocated into two groups (low < 2.75% or high ≥ 2.75%) depending on the number of CD4+28null NKG2D+ T cells. After receiving TTM over 6 sessions, the cell population of the high group had significantly decreased (p < 0.001), but the low group had no significant changes. In conclusion, multiple rounds of TTM may promote immunity through the attenuation of aberrant CD4+ T subsets. TTM may be provided as a complementary therapy to improve the immune system in elderly populations.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


2019 ◽  
Vol 38 (3) ◽  
pp. 256-267 ◽  
Author(s):  
Dorota Kostrzewa-Nowak ◽  
Rafał Buryta ◽  
Robert Nowak

SummaryBackgroundImmunological alterations may led to the reduction in capacity and endurance levels in elite athletes by e.g. increased susceptibility to infections. There is a need to explain the impact of intensive physical effort on the CD4+memory T cell subsets.MethodsFourteen participants median aged 19 years old (range 17–21 years) were recruited form Pogoń Szczecin S.A., soccer club. They performed progressive efficiency test on mechanical treadmill until exhaustion twice: during preparatory phases to spring and autumn competition rounds. We examined the influence of exhaustive effort on the selected CD45+, especially CD4+memory T cell subsets and inflammation markers determined before, just after the test and during recovery time.ResultsSignificant changes in total CD45+cells and decrease in T lymphocytes percentage after the run was observed. Significant fluctuations in T cells’ distribution were related not only to the changes in Th or Tc subsets but also to increase in naïve T cell percentage during recovery. Increase in TNF-α and IL-8 post-exercise, IL-6 and IL-10 plasma levels in recovery was also found.ConclusionsThe novel finding of our study is that the run performed on mechanical treadmill caused a significant release of CD4+T naïve cells into circulation. Post-exercise increase in circulating NK cells is related with fast biological response to maximal effort. However, at the same time an alternative mechanism enhancing inflammation is involved.


2021 ◽  
Vol 13 (593) ◽  
pp. eabb7495
Author(s):  
Yoshinori Yasuda ◽  
Shintaro Iwama ◽  
Daisuke Sugiyama ◽  
Takayuki Okuji ◽  
Tomoko Kobayashi ◽  
...  

Immune-related adverse events induced by anti–programmed cell death–1 antibodies (PD-1-Ab), including destructive thyroiditis (thyroid-irAE), are thought to be caused by activated T cells. However, the T cell subsets that are directly responsible for damaging self-organs remain unclear. To clarify which T cell subsets are involved in the development of thyroid-irAE, a mouse model of thyroid-irAE was analyzed. PD-1-Ab administration 2.5 months after immunization with thyroglobulin caused destructive thyroiditis. Thyroiditis was completely prevented by previous depletion of CD4+ T cells and partially prevented by depleting CD8+ T cells. The frequencies of central and effector memory CD4+ T cell subsets and the secretion of interferon-γ after stimulation with thyroglobulin were increased in the cervical lymph nodes of mice with thyroid-irAE compared with controls. Histopathological analysis revealed infiltration of CD4+ T cells expressing granzyme B in thyroid glands and major histocompatibility complex class II expression on thyrocytes in mice with thyroid-irAE. Adoptive transfer of CD4+ T cells from cervical lymph nodes in mice with thyroid-irAE caused destruction of thyroid follicular architecture in the irradiated recipient mice. Flow cytometric analyses showed that the frequencies of central and effector memory CD4+ T cells expressing the cytotoxic marker CD27 were higher in peripheral blood mononuclear cells collected from patients with thyroid-irAE induced by PD-1-Ab versus those without. These data suggest a critical role for cytotoxic memory CD4+ T cells activated by PD-1-Ab in the pathogenesis of thyroid-irAE.


2019 ◽  
Vol 20 (19) ◽  
pp. 4931 ◽  
Author(s):  
Andrea Bianco ◽  
Fabio Perrotta ◽  
Giusi Barra ◽  
Umberto Malapelle ◽  
Danilo Rocco ◽  
...  

Manipulation of the immune response is a game changer in lung cancer treatment, revolutionizing management. PD1 and CTLA4 are dynamically expressed on different T cell subsets that can either disrupt or sustain tumor growth. Monoclonal antibodies (MoAbs) against PD1/PDL1 and CTLA4 have shown that inhibitory signals can be impaired, blocking T cell activation and function. MoAbs, used as both single-agents or in combination with standard therapy for the treatment of advanced non-small cell lung cancer (NSCLC), have exhibited advantages in terms of overall survival and response rate; nivolumab, pembrolizumab, atezolizumab and more recently, durvalumab, have already been approved for lung cancer treatment and more compounds are in the pipeline. A better understanding of signaling elicited by these antibodies on T cell subsets, as well as identification of biological determinants of sensitivity, resistance and correlates of efficacy, will help to define the mechanisms of antitumor responses. In addition, the relevance of T regulatory cells (Treg) involved in immune responses in cancer is attracting increasing interest. A major challenge for future research is to understand why a durable response to immune checkpoint inhibitors (ICIs) occurs only in subsets of patients and the mechanisms of resistance after an initial response. This review will explore current understanding and future direction of research on ICI treatment in lung cancer and the impact of tumor immune microenvironment n influencing clinical responses.


Sign in / Sign up

Export Citation Format

Share Document