scholarly journals Abnormal phenotypic distribution of regulatory and effector T cells in octogenarian and nonagenarian women

2015 ◽  
Vol 61 (4) ◽  
pp. 329-335
Author(s):  
Wilson de Melo Cruvinel ◽  
Danilo Mesquita Júnior ◽  
Júlio Antônio Pereira Araújo ◽  
Karina Carvalho Samazi ◽  
Esper Georges Kállas ◽  
...  

SummaryIntroduction:aging is associated with several immunologic changes. Regulatory (Treg) and effector T cells are involved in the pathogenesis of infectious, neoplastic, and autoimmune diseases. Little is known about the effects of aging on the frequency and function of these T cell subpopulations.Methods:peripheral blood mononuclear cells (PBMC) were obtained from 26 young (under 44 years old) and 18 elderly (above 80 years old) healthy women. T cell subpopulations were analyzed by flow cytometry.Results:elderly individuals had lower frequency of several activated effector T cell phenotypes as compared with young individuals: CD3+CD4+CD25+ (3.82±1.93 versus 9.53±4.49; p<0.0001); CD3+CD4+CD25+CD127+(2.39±1.19 versus 7.26±3.84; p<0.0001); CD3+CD4+CD25+ (0.41±0.22 versus 1.86±0.85, p<0.0001); and CD3+CD4+CD25highCD127+(0.06±0.038 versus 0.94±0.64, p<0.0001). Treg (CD3+CD4+CD25+CD127øFoxp3+) presented lower frequency in elderly individuals as compared to young adults (0.34±0.18 versus 0.76±0.48; p=0.0004) and its frequency was inversely correlated with age in the whole group (r=-0.439; p=0.013). The elderly group showed higher frequency of two undefined CD25øFoxp3+ phenotypes: CD3+CD4+CD25øFoxp3+(15.05±7.34 versus 1.65±1.71; p<0.0001) and CD3+CD4+CD25øCD127øFoxp3+(13.0±5.52 versus 3.51±2.87; p<0.0001).Conclusions:the altered proportion of different T cell subsets herein documented in healthy elderly women may be relevant to the understanding of the immunologic behavior and disease susceptibility patterns observed in geriatric patients.

Author(s):  
Kanda Sornkayasit ◽  
Amonrat Jumnainsong ◽  
Wisitsak Phoksawat ◽  
Wichai Eungpinichpong ◽  
Chanvit Leelayuwat

The beneficial physiological effects of traditional Thai massage (TTM) have been previously documented. However, its effect on immune status, particularly in the elderly, has not been explored. This study aimed to investigate the effects of multiple rounds of TTM on senescent CD4+ T cell subsets in the elderly. The study recruited 12 volunteers (61–75 years), with senescent CD4+ T cell subsets, who received six weekly 1-h TTM sessions or rest, using a randomized controlled crossover study with a 30-day washout period. Flow cytometry analysis of surface markers and intracellular cytokine staining was performed. TTM could attenuate the senescent CD4+ T cell subsets, especially in CD4+28null NKG2D+ T cells (n = 12; p < 0.001). The participants were allocated into two groups (low < 2.75% or high ≥ 2.75%) depending on the number of CD4+28null NKG2D+ T cells. After receiving TTM over 6 sessions, the cell population of the high group had significantly decreased (p < 0.001), but the low group had no significant changes. In conclusion, multiple rounds of TTM may promote immunity through the attenuation of aberrant CD4+ T subsets. TTM may be provided as a complementary therapy to improve the immune system in elderly populations.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Tania A Nevers ◽  
Ane Salvador ◽  
Francisco Velazquez ◽  
Mark Aronovitz ◽  
Robert Blanton

Background: Cardiac fibrogenesis is a major pathogenic factor that occurs in heart failure (HF) and results in contractile dysfunction and ventricular dilation. Recently, we showed that T cell deficient mice (TCRα -/- ) do not develop cardiac fibrosis (CF) and have preserved cardiac function in the thoracic aortic constriction (TAC) mouse model of pressure overload (PO). Specifically, CD4 + T cells are activated in the cardiac draining lymph nodes and infiltrate the LV, where the Th1 and Th17 effector T cell signature transcription factors are significantly upregulated as compared with control mice. However, the T cell subsets involved and the mechanisms by which they contribute to CF and pathogenesis of non-ischemic HF remains to be determined. Thus, we hypothesize that heart infiltrated effector T cells perpetuate the fibrotic response by regulating the differentiation and activation of extracellular matrix-producing cardiac myofibroblasts. Methods and Results: Naïve or effector T cells differentiated in vitro or isolated from mice undergoing TAC or Sham surgery were co-cultured with adult C57BL/6 cardiac fibroblasts (CFB). In contrast with naïve T cells, effector T cells and PO activated T cells strongly adhered to CFB and mediated fibroblast to myofibroblasts transition as depicted by immunofluorescence expression of SMAα. Effector T cell supernatants only slightly mediated this transition, indicating that effector T cells direct contact with CFB, rather than cytokine release is required to mediate CFB transformation. Adoptive transfer of effector, but not naïve T cells, into TCRα -/- recipient mice in the onset of TAC resulted in T cells infiltration into the left ventricle and increased CF. Conclusions: Our data indicate that CD4+ effector T cells directly interact with CFB to induce CF in response to PO induced CF. Future studies will determine the adhesion mechanisms regulating this crosstalk and evaluate the pro-fibrotic mechanisms induced and whether this is a T effector cell specific subset. These results will provide an attractive tool to counteract the inflammatory/fibrotic process as an alternative option for the treatment of CF in non- ischemic HF.


2018 ◽  
Vol 74 (12) ◽  
pp. 1870-1878 ◽  
Author(s):  
Hung Cao Dinh ◽  
Rose Njemini ◽  
Oscar Okwudiri Onyema ◽  
Ingo Beyer ◽  
Keliane Liberman ◽  
...  

Abstract Aging is characterized by a progressive decline in immune function known as immunosenescence. Although the causes of immunosenescence are likely to be multifactorial, an age-associated accumulation of senescent T cells and decreased naive T-cell repertoire are key contributors to the phenomenon. On the other hand, there is a growing consensus that physical exercise may improve immune response in aging. However, the optimum training modality required to obtain beneficial adaptations in older subjects is lacking. Therefore, we aimed to investigate the effects of exercise modality on T-cell phenotypes in older women. A total of 100 women (aged ≥ 65 years) were randomized to either intensive strength training (80% of one-repetition maximum ), strength endurance training (40% one-repetition maximum), or control (stretching exercise) for 2–3 times per week during 6 weeks. The T-cell percentages and absolute counts were determined using flow cytometry and a hematology analyzer. C-reactive protein was measured using immunonephelometry. We report for the first time that 6 weeks of strength endurance training significantly decreased the basal percentage and absolute counts of senescence-prone T cells, which was positively related to the number of training sessions performed. Conceivably, training protocols with many repetitions—at a sufficiently high external resistance—might assist the reduction of senescence-prone T cells in older women.


2021 ◽  
Vol 13 (593) ◽  
pp. eabb7495
Author(s):  
Yoshinori Yasuda ◽  
Shintaro Iwama ◽  
Daisuke Sugiyama ◽  
Takayuki Okuji ◽  
Tomoko Kobayashi ◽  
...  

Immune-related adverse events induced by anti–programmed cell death–1 antibodies (PD-1-Ab), including destructive thyroiditis (thyroid-irAE), are thought to be caused by activated T cells. However, the T cell subsets that are directly responsible for damaging self-organs remain unclear. To clarify which T cell subsets are involved in the development of thyroid-irAE, a mouse model of thyroid-irAE was analyzed. PD-1-Ab administration 2.5 months after immunization with thyroglobulin caused destructive thyroiditis. Thyroiditis was completely prevented by previous depletion of CD4+ T cells and partially prevented by depleting CD8+ T cells. The frequencies of central and effector memory CD4+ T cell subsets and the secretion of interferon-γ after stimulation with thyroglobulin were increased in the cervical lymph nodes of mice with thyroid-irAE compared with controls. Histopathological analysis revealed infiltration of CD4+ T cells expressing granzyme B in thyroid glands and major histocompatibility complex class II expression on thyrocytes in mice with thyroid-irAE. Adoptive transfer of CD4+ T cells from cervical lymph nodes in mice with thyroid-irAE caused destruction of thyroid follicular architecture in the irradiated recipient mice. Flow cytometric analyses showed that the frequencies of central and effector memory CD4+ T cells expressing the cytotoxic marker CD27 were higher in peripheral blood mononuclear cells collected from patients with thyroid-irAE induced by PD-1-Ab versus those without. These data suggest a critical role for cytotoxic memory CD4+ T cells activated by PD-1-Ab in the pathogenesis of thyroid-irAE.


2019 ◽  
Vol 3 (23) ◽  
pp. 4081-4094 ◽  
Author(s):  
Shuntaro Ikegawa ◽  
Yusuke Meguri ◽  
Takumi Kondo ◽  
Hiroyuki Sugiura ◽  
Yasuhisa Sando ◽  
...  

Key Points PD-1 blockade exacerbated GVHD by altering the homeostasis of Tregs and effector T cells after HSCT. PTCy ameliorated GVHD after PD-1 blockade by restoring the homeostatic balance of T-cell subsets.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-39-SCI-39 ◽  
Author(s):  
Stanley Riddell ◽  
Cameron Turtle ◽  
Michael Hudecek ◽  
Daniel Sommermeyer ◽  
Michael C. Jensen

Abstract Adoptive T-cell therapy with tumor-reactive T cells is emerging as a highly effective strategy for eliminating even the most advanced chemotherapy refractory malignancies. Endogenous T cells specific for tumor-associated antigens can sometimes be isolated and expanded from the patient’s blood or tumor infiltrate, or more expeditiously can be engineered by gene transfer to express a T-cell receptor specific for a tumor associated MHC/peptide complex or a synthetic chimeric antigen receptor (CAR) specific for a tumor associated cell surface molecule. The remarkable regression of advanced acute lymphocytic leukemia and lymphoma in patients treated with T cells engineered to express CD19-specific CARs illustrates the potential for this approach to transform clinical care. Therapeutic activity is variable in individual patients, however, and this appears to correlate with the ability of transferred, tumor-reactive T cells to persist and proliferate in vivo, and to retain effector function. These attributes may reflect both the qualities of the T cells that are isolated or engineered for therapy, and the local tumor microenvironment that may contain regulatory T cells; cells that express ligands that engage inhibitor receptors on effector T cells or cytokines that inhibit effector T-cell proliferation. The CD4+ and CD8+ T cell pools in normal individuals contain a variety of naïve, memory, and regulatory T-cell subsets that differ in epigenetic, transcriptional, and functional properties. Because most clinical protocols have used polyclonal peripheral blood mononuclear cells as recipients for CAR gene transfer, the composition of T-cell products that are being administered is highly variable, particularly when the T cells are obtained from cancer patients that have received prior cytotoxic chemotherapy that can skew the phenotypic composition of the peripheral T-cell pool. As a consequence, transferring tumor-targeting receptors into polyclonal unselected cell populations provides poor control over the cellular composition of the final T-cell product, which may in part explain the marked differences in efficacy and toxicity that have been observed in the clinic, and may complicate regulatory approval of these novel therapies. Methods to derive T cells from distinct naïve and memory T-cell subsets have been developed, enabling the rapid production of therapeutic T cells of uniform composition. The results of preclinical studies that illustrate the improved potency of defined T-cell products that are engineered with tumor-specific CARs, and the clinical implementation of this approach in B-cell malignancies will be presented. Disclosures: Riddell: Cell Medica: Consultancy, Membership on an entity’s Board of Directors or advisory committees; ZetaRx: Consultancy.


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


2013 ◽  
Vol 82 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Yousuke Maeda ◽  
Kana Yamamoto ◽  
Hiromichi Ohtsuka ◽  
Takaaki Ando ◽  
Michiko Tomioka ◽  
...  

An interaction between the conceptus and the immune system of animals is important during implantation. The aim of this study was to clarify the gene expression of T cell subsets in gravid cows during the preimplantation period. Peripheral blood from 14 Holstein dairy cows was taken 14 days after artificial insemination. Based on the gravidity, cows were divided into gravid (n = 8) and nongravid (n = 6) groups. Mononuclear cells from peripheral blood were stimulated with phytohaemagglutinin and then CD4+, CD8+, and WC1+ γδ T cell subsets were isolated using magnetic cell sorting. The expression of interferon γ, interleukin 4, and progesterone induced blocking factor were determined using real-time PCR. The expression of interleukin 4 and progesterone induced blocking factor was significantly higher in WC1+ γδ T cells from gravid cows. In addition, interleukin 4 expression in WC1+ γδ T cells from gravid cows was significantly higher than that in CD4+ and CD8+ T cells. This study describes for the first time the important role of WC1+ γδ T cells during the preimplantation period in cows.


2020 ◽  
Author(s):  
Gang Xu ◽  
Furong Qi ◽  
Hanjie Li ◽  
Qianting Yang ◽  
Haiyan Wang ◽  
...  

Understanding the mechanism that leads to immune dysfunction induced by SARS-CoV2 virus is crucial to develop treatment for severe COVID-19. Here, using single cell RNA-seq, we characterized the peripheral blood mononuclear cells (PBMC) from uninfected controls and COVID-19 patients, and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased dendritic cells (DC) and increased monocytes resembling myeloid-derived suppressor cells (MDSC) which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to health controls. In contrast, the proportions of various activated CD4+ T cell subsets, including Th1, Th2 and Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients' peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs produced higher levels of IFNG, TNF, CCL4 and CCL5 etc. Paired TCR tracking indicated abundant recruitment of peripheral T cells to the patients' lung. Together, this study comprehensively depicts how the immune cell landscape is perturbed in severe COVID-19.


2012 ◽  
Vol 3 (3) ◽  
pp. 205-210 ◽  
Author(s):  
J.T. Brisbin ◽  
P. Parvizi ◽  
S. Sharif

Members of the intestinal microbiota play an important role in the development of T-cells. Little is known about responses of intestinal T-cell subsets of chickens to commensal bacteria. Therefore, we set out to characterise cytokine responses in T-cells after exposure to lactobacilli. Caecal tonsil mononuclear cells were isolated and co-cultured with Lactobacillus acidophilus, Lactobacillus reuteri and Lactobacillus salivarius for 12 hours. Subsequently the CD4+ and CD8+ cells were fractionated by flow cytometry and the expression of pro- and anti-inflammatory cytokines as well as Toll-like receptor 21 (TLR21) was determined. The results demonstrated that chicken CD4+ and CD8+ T-cells express TLR21 and that the various isolates of lactobacilli differentially induces the expression of interleukin 10, interferon-gamma and transforming growth factor beta. Our results demonstrate that different Lactobacillus species have the capacity to regulate intestinal T-cell responses and that these responses may be important to intestinal homeostasis.


Sign in / Sign up

Export Citation Format

Share Document