scholarly journals Regulation of plant antiviral defense genes via host RNA-silencing mechanisms

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Paola Leonetti ◽  
Johannes Stuttmann ◽  
Vitantonio Pantaleo

Abstract Background Plants in nature or crops in the field interact with a multitude of beneficial or parasitic organisms, including bacteria, fungi and viruses. Viruses are highly specialized to infect a limited range of host plants, leading in extreme cases to the full invasion of the host and a diseased phenotype. Resistance to viruses can be mediated by various passive or active mechanisms, including the RNA-silencing machinery and the innate immune system. Main text RNA-silencing mechanisms may inhibit viral replication, while viral components can elicit the innate immune system. Viruses that successfully enter the plant cell can elicit pattern-triggered immunity (PTI), albeit by yet unknown mechanisms. As a counter defense, viruses suppress PTI. Furthermore, viral Avirulence proteins (Avr) may be detected by intracellular immune receptors (Resistance proteins) to elicit effector-triggered immunity (ETI). ETI often culminates in a localized programmed cell death reaction, the hypersensitive response (HR), and is accompanied by a potent systemic defense response. In a dichotomous view, RNA silencing and innate immunity are seen as two separate mechanisms of resistance. Here, we review the intricate connections and similarities between these two regulatory systems, which are collectively required to ensure plant fitness and resilience. Conclusions The detailed understanding of immune regulation at the transcriptional level provides novel opportunities for enhancing plant resistance to viruses by RNA-based technologies. However, extensive use of RNA technologies requires a thorough understanding of the molecular mechanisms of RNA gene regulation. We describe the main examples of host RNA-mediated regulation of virus resistance.

2021 ◽  
Vol 22 (17) ◽  
pp. 9535
Author(s):  
Yuhuai Xie ◽  
Yuanyuan Wei

Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
G. Prashanth ◽  
Basavaraj Vastrad ◽  
Anandkumar Tengli ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

Abstract Background Type 1 diabetes (T1D) is a serious threat to childhood life and has fairly complicated pathogenesis. Profound attempts have been made to enlighten the pathogenesis, but the molecular mechanisms of T1D are still not well known. Methods To identify the candidate genes in the progression of T1D, expression profiling by high throughput sequencing dataset GSE123658 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and gene ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI), modules, target gene - miRNA regulatory network and target gene - TF regulatory network analysis were constructed and analyzed using HIPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, validation of hub genes was conducted by using ROC (Receiver operating characteristic) curve and RT-PCR analysis. A molecular docking study was performed. Results A total of 284 DEGs were identified, consisting of 142 up regulated genes and 142 down regulated genes. The gene ontology (GO) and pathways of the DEGs include cell-cell signaling, vesicle fusion, plasma membrane, signaling receptor activity, lipid binding, signaling by GPCR and innate immune system. Four hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell-cell signaling, cytokine signaling in immune system, signaling by GPCR and innate immune system. ROC curve and RT-PCR analysis showed that EGFR, GRIN2B, GJA1, CAP2, MIF, POLR2A, PRKACA, GABARAP, TLN1 and PXN might be involved in the advancement of T1D. Molecular docking studies showed high docking score. Conclusions DEGs and hub genes identified in the present investigation help us understand the molecular mechanisms underlying the advancement of T1D, and provide candidate targets for diagnosis and treatment of T1D.


2009 ◽  
Vol 78 (2) ◽  
pp. 773-782 ◽  
Author(s):  
Jason L. O'Loughlin ◽  
Justin L. Spinner ◽  
Scott A. Minnich ◽  
Scott D. Kobayashi

ABSTRACT Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the most abundant innate immune cell and kill most invading bacteria through combined activities of reactive oxygen species (ROS) and antimicrobial granule constituents. Pathogens such as Yersinia pestis resist destruction by the innate immune system and are able to survive in macrophages and neutrophils. The specific molecular mechanisms used by Y. pestis to survive following phagocytosis by human PMNs are incompletely defined. To gain insight into factors that govern Y. pestis intracellular survival in neutrophils, we inactivated 25 two-component gene regulatory systems (TCSs) with known or inferred function and assessed susceptibility of these mutant strains to human PMN granule extracts. Y. pestis strains deficient for PhoPQ, KdpED, CheY, CvgSY, and CpxRA TCSs were selected for further analysis, and all five strains were altered for survival following interaction with PMNs. Of these five strains, only Y. pestis ΔphoPQ demonstrated global sensitivity to a panel of seven individual neutrophil antimicrobial peptides and serine proteases. Notably, Y. pestis ΔphoPQ was deficient for intracellular survival in PMNs. Iterative analysis with Y. pestis strains lacking the PhoP-regulated genes ugd and pmrK indicated that the mechanism most likely responsible for increased resistance to killing is 4-amino-4-deoxy-l-arabinose modification of lipid A. Together, the data provide new information about Y. pestis evasion of the innate immune system.


2016 ◽  
Vol Volume 112 (Number 1/2) ◽  
Author(s):  
Jan G. Nel ◽  
Annette J. Theron ◽  
Roger Pool ◽  
Chrisna Durandt ◽  
Gregory R. Tintinger ◽  
...  

Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.


2017 ◽  
Vol 114 (13) ◽  
pp. E2758-E2765 ◽  
Author(s):  
Alexey V. Kostarnoy ◽  
Petya G. Gancheva ◽  
Bernd Lepenies ◽  
Amir I. Tukhvatulin ◽  
Alina S. Dzharullaeva ◽  
...  

Sterile (noninfected) inflammation underlies the pathogenesis of many widespread diseases, such as allergies and autoimmune diseases. The evolutionarily conserved innate immune system is considered to play a key role in tissue injury recognition and the subsequent development of sterile inflammation; however, the underlying molecular mechanisms are not yet completely understood. Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage. Mincle activation by cholesterol sulfate causes the secretion of a range of proinflammatory mediators, and s.c. injection of cholesterol sulfate results in a Mincle-mediated induction of a severe local inflammatory response. In addition, our study reveals a role of Mincle as a driving component in the pathogenesis of allergic skin inflammation. In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion. Taken together, our results provide a deeper understanding of the fundamental mechanisms underlying sterile inflammation.


2016 ◽  
Vol 90 (22) ◽  
pp. 10259-10270 ◽  
Author(s):  
Lei-Ke Zhang ◽  
Qi-Lin Xin ◽  
Sheng-Lin Zhu ◽  
Wei-Wei Wan ◽  
Wei Wang ◽  
...  

ABSTRACT The family Arenaviridae includes several important human pathogens that can cause severe hemorrhagic fever and greatly threaten public health. As a major component of the innate immune system, the RLR/MAVS signaling pathway is involved in recognizing viral components and initiating antiviral activity. It has been reported that arenavirus infection can suppress the innate immune response, and NP and Z proteins of pathogenic arenaviruses can disrupt RLR/MAVS signaling, thus inhibiting production of type I interferon (IFN-I). However, recent studies have shown elevated IFN-I levels in certain arenavirus-infected cells. The mechanism by which arenavirus infection induces IFN-I responses remains unclear. In this study, we determined that the L polymerase (Lp) of Mopeia virus (MOPV), an Old World (OW) arenavirus, can activate the RLR/MAVS pathway and thus induce the production of IFN-I. This activation is associated with the RNA-dependent RNA polymerase activity of Lp. This study provides a foundation for further studies of interactions between arenaviruses and the innate immune system and for the elucidation of arenavirus pathogenesis. IMPORTANCE Distinct innate immune responses are observed when hosts are infected with different arenaviruses. It has been widely accepted that NP and certain Z proteins of arenaviruses inhibit the RLR/MAVS signaling pathway. The viral components responsible for the activation of the RLR/MAVS signaling pathway remain to be determined. In the current study, we demonstrate for the first time that the Lp of MOPV, an OW arenavirus, can activate the RLR/MAVS signaling pathway and thus induce the production of IFN-I. Based on our results, we proposed that dynamic interactions exist among Lp-produced RNA, NP, and the RLR/MAVS signaling pathway, and the outcome of these interactions may determine the final IFN-I response pattern: elevated or reduced. Our study provides a possible explanation for how IFN-I can become activated during arenavirus infection and may help us gain insights into the interactions that form between different arenavirus components and the innate immune system.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1410
Author(s):  
Yuriy A. Knirel ◽  
Andrey P. Anisimov ◽  
Angelina A. Kislichkina ◽  
Anna N. Kondakova ◽  
Olga V. Bystrova ◽  
...  

Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host’s innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.


Sign in / Sign up

Export Citation Format

Share Document