scholarly journals Nutritional supplements and mother’s milk composition: a systematic review of interventional studies

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mojtaba Keikha ◽  
Ramin Shayan-Moghadam ◽  
Maryam Bahreynian ◽  
Roya Kelishadi

Abstract Background This study aims to systematically review the effects of maternal vitamin and/or mineral supplementation on the content of breast milk. Methods We systematically searched electronic databases including Medline via PubMed, Scopus and ISI Web of Science till May 24, 2018. The following terms were used systematically in all mentioned databases: (“human milk” OR “breast milk” OR “breast milk composition” OR “human breast milk composition” OR “composition breast milk” OR “mother milk” OR “human breast milk” OR “maternal milk”) AND (“vitamin a” OR “retinol” OR “retinal” OR “retinoic acid” OR “beta-carotene” OR “beta carotene” OR “ascorbic acid” OR “l-ascorbic acid” OR “l ascorbic acid” OR “vitamin c” OR “vitamin d” OR “cholecalciferol” OR “ergocalciferol” OR “calciferol” OR “vitamin e” OR “tocopherol” OR “tocotrienol” OR “alpha-tocopherol” OR “alpha tocopherol” OR “α-tocopherol” OR “α tocopherol” OR “vitamin k” OR “vitamin b” OR “vitamin b complex” OR “zinc” OR “iron” OR “copper” Or “selenium” OR “manganese” OR “magnesium”) and we searched Medline via Medical subject Headings (MeSH) terms. We searched Google Scholar for to increase the sensitivity of our search. The search was conducted on human studies, but it was not limited to the title and abstract. Methodological quality and risk of bias of included studies were evaluated by Jadad scale and Cochrane risk of bias tools, respectively. Results This review included papers on three minerals (zinc, iron, selenium) and 6 vitamins (vitamin A, B, D, C, E and K) in addition to multi-vitamin supplements. Although studies had different designs, e.g. not using random allocation and/or blinding, our findings suggest that maternal use of some dietary supplements, including vitamin A, D, vitamin B1, B2 and vitamin C might be reflected in human milk. Vitamin supplements had agreater effect on breast milk composition compared to minerals. Higher doses of supplements showed higher effects and they were reflected more in colostrum than in the mature milk. Conclusion Maternal dietary vitamin and/or mineral supplementation, particularly fat- soluble vitamins, vitamin B1, B2 and C might be reflected in the breast milk composition. No difference was found between mega dose and single dose administration of minerals.

1998 ◽  
Vol 156 (3) ◽  
pp. 551-561 ◽  
Author(s):  
JF Mutaku ◽  
MC Many ◽  
I Colin ◽  
JF Denef ◽  
MF van den Hove

The effects of the vitamins dl-alpha-tocopherol, ascorbic acid and beta-carotene, free radical scavengers and lipid peroxidation inhibitors, were analyzed in male Wistar rats made goitrous by feeding a low iodine diet (< 20 micrograms iodine/kg) and perchlorate (1% in drinking water) for 4, 8, 16, and 32 days. Groups of control or goitrous rats received for at least 16 days before killing a diet containing 0.6% vitamin E (as dl-alpha-tocopherol acetate), 1.2% vitamin C (ascorbic acid) and 0.48% beta-carotene, either simultaneously (vitamin cocktail) or separately. This treatment led to a 5-fold increase of vitamin E in the thyroid gland, a 24-fold increase in the liver and a 3-fold increase in the plasma. In control rats, vitamin cocktail administration increased slightly the thyroid weight with little changes in thyroid function parameters. During iodine deficiency, administration of the vitamin cocktail or vitamin E alone reduced significantly the rate of increase in thyroid weight, and DNA and protein contents, as well as the proportion of [3H]thymidine labeled thyroid follicular cells, but not that of labeled endothelial cells. Plasma tri-iodothyronine, thyroxine, TSH levels, thyroid iodine content and concentration as well as relative volumes of glandular compartments were not modified. The proportion of necrotic cells rose from 0.5% in normal animals to about 2% after 16 days of goiter development. No significant protective effect of the vitamins was observed. These results suggest that these vitamins, particularly vitamin E, modulate one of the regulatory cascades involved in the control of thyroid follicular cell growth, without interfering with the proliferation of endothelial cells.


2000 ◽  
Vol 70 (2) ◽  
pp. 54-64 ◽  
Author(s):  
Jeanne Chantal Essama-Tjani ◽  
Jean-Claude Guilland ◽  
Françoise Fuchs ◽  
Marie Lombard ◽  
Dominique Richard

Vitamin status was assessed in 26 recently institutionalized elderly subjects by combining dietary and biochemical measurements of thiamin, riboflavin, niacin, beta-carotene, vitamins C, A, D and E at admission (P1), and 1.5 (P2), 3.0 (P3), 4.5 (P4), 6.0 (P5), 12 (P6) months later. At admission, except for vitamin A, mean vitamin intakes were lower than the 1992 French Recommended Dietary Allowance. Thiamin, vitamins C, A and E status seemed nearly satisfactory as less than one-fourth of the population sample had blood values lower than the cut-off point for thiamin (erythrocyte thiamin pyrophosphate < 0.17 mumol/l), vitamin A (serum retinol < 1.05 mumol/l), vitamin C (serum vitamin C < 11.3 mumol/l) and vitamin E (serum alpha-tocopherol < 9.3 mumol/l) or higher than the cut-off point for thiamin (erythrocyte transketolase activity coefficient > 1.19). Almost half of the subjects for riboflavin, and almost all non supplemented subjects for vitamin D were in risk of vitamin deficiency (46% had an erythrocyte glutathione reductase activity coefficient > 1.19 and 72% had a plasma 25(OH)D3 < 25 nmol/l). During the study, vitamins status remained unchanged for riboflavin, niacin, vitamins A, D and E, improved for vitamin C (P = 0.004) or impaired for thiamin (P = 0.008). Thus, institutionalization seemed to have no effect on riboflavin, niacin, vitamins A, D and E status and a slight effect on thiamin and vitamin C status.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 130-130
Author(s):  
Sumathi Swaminathan ◽  
Sumithra Selvam ◽  
Agnita Narendra ◽  
Tinku Thomas ◽  
Anil Vasudevan ◽  
...  

Abstract Objectives Vitamin A requirements in early infancy are met only by breast milk intake. It is critical to ensure adequate breast milk vitamin A levels which also helps develop liver stores. The objective of the study was to evaluate the effect of a maternal food-based intervention on breast milk vitamin A content Methods Pregnant women (n = 50; 24 ± 1 week of gestation) were recruited for the randomized study. A 10 g of a green leafy vegetable powder (mint/coriander/curry) providing about 3200 μg β-carotene/day, for a period of 4 months up to 1 month of lactation were provided for intervention arm. Breast milk (BM) retinol concentration and BM volume were assessed. BM retinol and beta-carotene were assayed by HPLC and BM fat by creamatocrit method. BM retinol: fat ratio was calculated. The dose-to-mother deuterium dilution technique was used to estimate BM volume through enrichment of saliva measured by Fourier Transform Infrared Spectroscopy. Total BM retinol content was calculated from BM volume and the BM retinol (including beta-carotene:1 vitamin A RAE = 12 μg β-carotene). Inadequacy of intake was defined as proportion of infants with intake below a requirement of 400 μg RAE/day. Analysis of co-variance was performed after adjusting for age of mother, change in maternal blood retinol from baseline and BM fat, to compare outcomes between intervention and control arm. Results Maternal age, gestational age, socio-demographic characteristics and baseline vitamin A intake were comparable in both arms. Mean BM volume was similar in the 2 arms (676 ± 102 in intervention vs 630 ± 100 ml/day in control). BM retinol content (0.72 ± 0.12 vs 0.64 ± 0.11 μg/mL; P = 0.029) and BM retinol: fat ratio [0.41 (0.31, 0.47) vs 0.29 (0.21, 0.41), P = 0.011] were significantly higher in the intervention arm. The mean total BM retinol content was significantly higher in the intervention (482.2 ± 100.7 vs 406.5 ± 89.2 μg/day; P = 0.015; Cohen's effect size 0.80). Inadequacy of infant vitamin A intake was 14.3% in the intervention arm as against 39.1% in the control arm (P = 0.065). Conclusions The food-based intervention was effective in increasing vitamin A content in breast milk and thereby vitamin A intake in infants. Funding Sources International Atomic Energy Agency.


Glycobiology ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 774-786 ◽  
Author(s):  
Sara Porfirio ◽  
Stephanie Archer-Hartmann ◽  
G Brett Moreau ◽  
Girija Ramakrishnan ◽  
Rashidul Haque ◽  
...  

Abstract Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being &gt;5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.


Open Medicine ◽  
2006 ◽  
Vol 1 (1) ◽  
pp. 23-34
Author(s):  
Anna Gorąca ◽  
Beata Skibska

AbstractSerum contains various antioxidant molecules that may provide important protection against free radical attack. The aim of this work was to assess the total antioxidant capacity of plasma and a marker of lipid per oxidation [(thiobarbituric acid-reactive substances (TBARS)] in plasma of healthy smoking and non-smoking young and elderly subjects. In addition, we investigated plasma concentrations of α-tocopherol, β-carotene, and ascorbic acid. In in vitro experiments, the effects of exogenous compounds (ascorbic acid, uric acid, Trolox) on total ferric-reducing activity of plasma (FRAP) were also tested. We demonstrated that total antioxidant capacity of plasma obtained from healthy non-smoking young subjects was significantly higher than plasma antioxidant capacity of smoking elderly subjects. The concentration of TBARS in young non-smoking volunteers was lower than that in young smokers. The concentration of TBARS in elderly non-smoking volunteers was lower than in elderly smokers. Plasma concentrations of alpha-tocopherol, beta-carotene and ascorbic acid were significantly lower in elderly smoker than in elderly non-smokers of the same age. No difference in the plasma levels of alpha-tocopherol, beta-carotene and ascorbic acid were found in 22-year-old smoking and non-smoking subjects. In vitro addition of ascorbic acid, uric acid, or Trolox to plasma samples significantly increased their total antioxidant capacity. Decrease of FRAP values and increase of TBARS concentrations is a significant physiologic condition of the aging process. Supplementation of antioxidants could be useful for the enhancement of antioxidant screen in plasma.


Redox Report ◽  
2013 ◽  
Vol 18 (6) ◽  
pp. 219-223
Author(s):  
Clara A. Veloso ◽  
Bárbara F. Oliveira ◽  
Fernanda Elisa P. Mariani ◽  
Fernanda S. Fagundes-Neto ◽  
Caroline Maria O. Volpe ◽  
...  

2013 ◽  
Vol 28 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Giulia Praticò ◽  
Giorgio Capuani ◽  
Alberta Tomassini ◽  
Maria Elisabetta Baldassarre ◽  
Maurizio Delfini ◽  
...  

2001 ◽  
Vol 85 (05) ◽  
pp. 758-760 ◽  
Author(s):  
Roberto Marchioli

SummaryInterest in the use of antioxidants for the treatment of human disease, and in the role of dietary antioxidants in the prevention of disease development, has been sustained for at least two decades. Several anti-oxidant protective mechanisms exist and constitute a primary defensive system including enzymatic defences (glutathione peroxidase and superoxide dismutase, which depend on the presence of ions such as selenium, zinc, copper, and manganese) and naturally occurring vita-mins such as vitamin E, vitamin A, beta-carotene, and vitamin C. The most important natural antioxidants are vitamin E (in the form of α-, β-, γ-, and δ-tocopherols), beta-carotene, vitamin C and selenium (fundamental constituent of glutathione-peroxidase, i.e., an enzyme with antioxidant function). The first two are lipophilic substances whilst ascorbic acid is hydrophilic. Each antioxidant has a different important mechanism of action since oxidative damage can be caused by lipid- or water-soluble molecules. Lipid-soluble antioxidants are likely to be very important in preventing the peroxidation of low-density lipo-proteins (LDL) and this action could be paramount in the prevention of atherosclerosis. On the other hand, water-soluble antioxidants could be useful where a water-soluble oxidative stress occurs (e.g., inflammation). As lipophilic molecules, vitamin E and beta-carotene are incorporated into the LDL particle. Vitamin E is the main lipid-soluble chain-breaking antioxidant in plasma and tissues and converts the peroxyl-free radical to hydroperoxide, a less reactive radical. It acts as a first-line anti-oxidative defence of LDL particles, protecting unsatu-rated fatty acids from peroxidation. Beta-carotene is a carotenoid (precursor of vitamin A, pro-vitamin) that acts as scavenger of oxidising radicals such as singlet oxygen and is a second-line antioxidative defence of LDL cholesterol. Vitamin C (ascorbic acid) can react with singlet oxygen, superoxide, hydroxyl radicals, and is the first line of antioxi-dative defence in water-soluble compartments. In addition, it plays an important role in regenerating reduced -tocopherol.


Sign in / Sign up

Export Citation Format

Share Document