scholarly journals Circ_0045714/miR-331-3p interaction affects IL-1β-evoked human articular chondrocyte injury through regulating PIK3R3 in a ceRNA regulatory cascade

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ran Ding ◽  
Jinsong Zhou ◽  
Jianguo Xu ◽  
Huajie Lu ◽  
Tingting Zhang ◽  
...  

Abstract Background Osteoarthritis (OA) is characterized by joint pain and joint function limitation. Hsa_circ_0045714 (circ_0045714) is a novel OA-related circular RNA. However, its repertoire remains to be further clarified in joint chondrocytes. Methods RNA and protein expression levels and inflammatory factor levels were detected by real-time quantitative polymerase chain reaction, western blotting and enzyme-linked immunosorbent assay. Cell proliferation and apoptosis were determined by colony formation assay, cell counting kit-8 assay and apoptosis assay. Direct interaction was predicted by bioinformatics method and confirmed by dual-luciferase reporter assay. Results Expression of circ_0045714 and phosphoinositide-3-kinase (PI3K) regulatory subunit 3 (PIK3R3) was declined, and microRNA (miR)-331-3p was promoted in knee articular cartilages and cells from OA patients, as well as interleukin (IL)-1β-challenged human articular chondrocytes (HAC) cell line. In stimulation of IL-1β, HAC cells showed a loss of colony formation ability, cell viability and expression of Bcl-2 and Collagen II, allied with an increase in apoptosis rate and levels of IL-6, IL-8 and tumor necrosis factor-α, Bcl-2-associated X protein, cleaved caspase-3, and ADAM with thrombospondin motif-5. Noticeably, overexpressing circ_0045714 and inhibiting miR-331-3p could suppress IL-1β-evoked these effects, and both were through up-regulating PIK3R3, a key gene in PI3K/AKT signaling pathway. Mechanically, circ_0045714 functioned as competing endogenous RNA (ceRNA) for miR-331-3p and further regulated expression of the downstream target gene PIK3R3. Conclusion There was a novel circ_0045714/miR-331-3p/PIK3R3 ceRNA axis in HAC, and its inhibition might be one mechanism of HAC injury in OA.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuan Wang ◽  
Yan Liu ◽  
Jian Rong ◽  
Kai Wang

Abstract Background Long non-coding RNAs (lncRNAs) are widely reported to be involved in the development of human diseases. HLA complex P5 (HCP5) deregulation is associated with various diseases. However, the function of HCP5 in diabetic nephropathy (DN) is unclear. Methods Human glomerular mesangial cells (HGMCs) were treated with high glucose (HG) to establish DN cell models. The expression of HCP5, miR-93-5p and high mobility group AT-hook 2 (HMGA2) mRNA was detected using quantitative polymerase chain reaction (QPCR). Cell proliferation and cell apoptosis were assessed using cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The expression of apoptosis- and fibrosis-related proteins and HMGA2 protein was quantified by western blot. The release of pro-inflammatory factor was checked using enzyme-linked immunosorbent assay (ELISA). The predicted relationship between miR-93-5p and HCP5 or HMGA2 was verified using dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. Results The expression of HCP5 and HMGA2 was enhanced, while the expression of miR-93-5p was declined in DN serum samples and HG-treated HGMCs. HCP5 knockdown or miR-93-5p restoration ameliorated HG-induced HGMC proliferation, fibrosis and inflammation. MiR-93-5p was a target of HCP5, and miR-93-5p inhibition reversed the effects caused by HCP5 knockdown. Moreover, HMGA2 was a target of miR-93-5p, and HMGA2 overexpression abolished the effects of miR-93-5p restoration. HCP5 knockdown inhibited the AKT/mTOR signaling pathway. Conclusion HCP5 was implicated in DN progression by modulating the miR-93-5p/HMGA2 axis, which provided new insights into the understanding of DN pathogenesis.


2017 ◽  
Vol 44 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Guping Mao ◽  
Peihui Wu ◽  
Ziji Zhang ◽  
Zhiqi Zhang ◽  
Weiming Liao ◽  
...  

Background/Aims: Aggrecanase-1 (ADAMTS-4) and aggrecanase-2 (ADAMTS-5) are secreted enzymes belonging to the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family that play significant roles in the progression of osteoarthritis (OA). Here, we aimed to determine whether the expression of ADAMTS-4/5 in chondrogenesis and inflammation is regulated by microRNA-92a-3p (miR-92a-3p). Methods: MiR-92a-3p and ADAMTS-4/5 expressions were determined by quantitative polymerase chain reaction (qPCR). To investigate the repressive effect of miR-92a-3p on ADAMTS-4/5 expression, chondrogenic human mesenchymal stem cells (hMSCs) and human chondrocytes were transfected with mature miR-92a-3p or an antisense inhibitor (anti-miR-92a-3p), respectively. ADAMTS-4/5 protein production was quantified by enzyme-linked immunosorbent assay (ELISA), and miR-92a-3p involvement in IL-1β-mediated catabolic effects was examined by immunoblotting. The roles of activated MAP kinases (MAPK) and nuclear factor (NF)-κB were evaluated by using specific inhibitors. Interaction between miR-92a-3p and its putative binding site in the 3′-untranslated region (3′-UTR) of ADAMTS-4/5 mRNA was confirmed by luciferase reporter assay. Results: miR-92a-3p expression was elevated in chondrogenic hMSCs, with significantly lower expression in OA cartilage than in normal cartilage. Stimulation with IL-1β significantly reduced miR-92a-3p expression in primary human chondrocytes (PHCs). Transfection of chondrocytes with miR-92a-3p downregulated IL-1β-induced ADAMTS-4/5 expression, and the activity of a reporter construct containing the 3′-UTR of human ADAMTS-4/5 mRNA. MiR-92a-3p expression was suppressed upon IL-1β-induced activation of MAPK and NF-κB in chondrocytes. Conclusion: MiR-92a-3p is an important regulator of ADAMTS-4/5 in human chondrocytes and may contribute to the development of OA.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Kai Ren ◽  
Buying Li ◽  
Liqing Jiang ◽  
Zhiheng Liu ◽  
Fan Wu ◽  
...  

Background. Acute myocardial infarction (AMI) is a common cardiovascular disease with high disability and mortality. Circular RNAs (circRNAs) are implicated in the pathomechanism of multiple human diseases, including AMI. This study intended to explore the function and working mechanism of a novel circRNA circ_0023461 in hypoxia-induced cardiomyocytes. Methods. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were implemented to detect RNA and protein expression. Cell counting kit-8 (CCK8) assay and 5-ethynyl-2 ′ -deoxyuridine (Edu) assay were conducted to analyze cell viability and proliferation ability. Cell migration and apoptosis were assessed by Transwell assay and flow cytometry. Cell oxidative stress was analyzed using the commercial kits. Enzyme-linked immunosorbent assay (ELISA) was conducted to analyze cell inflammation. Cell glycolytic metabolism was evaluated using the commercial kits. Dual-luciferase reporter assay and RNA pull-down assay were conducted to verify the intermolecular interactions. Results. circ_0023461 expression was upregulated in AMI patients and hypoxia-induced AC16 cells. Hypoxia restrained the viability, proliferation, migration, and glycolysis and induced the apoptosis, oxidative stress, and inflammation of AC16 cells, and these effects were attenuated by the silence of circ_0023461. MicroRNA-370-3p (miR-370-3p) was verified as a target of circ_0023461, and circ_0023461 silencing-mediated protective effects in hypoxia-induced cardiomyocytes were partly alleviated by the knockdown of miR-370-3p. miR-370-3p interacted with the 3 ′ untranslated region (3 ′ UTR) of phosphodiesterase 4D (PDE4D), and PDE4D overexpression partly reversed miR-370-3p overexpression-induced protective effects in hypoxia-induced cardiomyocytes. circ_0023461 can upregulate PDE4D expression by acting as a molecular sponge for miR-370-3p in AC16 cells. Conclusion. circ_0023461 knockdown attenuated hypoxia-induced dysfunction in AC16 cells partly by targeting the miR-370-3p/PDE4D axis.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1336-1349
Author(s):  
Qianlan Dong ◽  
Qiong Wang ◽  
Xiaohui Yan ◽  
Xiaoming Wang ◽  
Zhenjiang Li ◽  
...  

Abstract Background Diabetic nephropathy (DN) is a common diabetic complication. Long noncoding RNAs (lncRNAs) have been identified as essential regulators in DN progression. This study is devoted to the research of lncRNA-myocardial infarction-associated transcript (MIAT) in DN. Methods DN cell model was established by high glucose (HG) treatment for human renal tubular epithelial cells (HK-2). Cell viability and colonizing capacity were analyzed by Cell Counting Kit-8 (CCK-8) and colony formation assay. Apoptosis was assessed via caspase-3 detection and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used for evaluating inflammation. The protein determination was completed using western blot. MIAT, microRNA-182-5p (miR-182-5p), and G protein-coupled receptor class C group 5 member A (GPRC5A) levels were all examined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Intergenic binding was verified using dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. Results HG induced the inhibition of cell growth, but accelerated apoptosis and inflammation as well as the activation of nuclear factor kappa B (NF-κB) pathway. MIAT reestablishment prevented the HG-induced cell damages and NF-κB signal activation. Mechanistically, MIAT was proved as a miR-182-5p sponge and regulated the expression of GPRC5A that was a miR-182-5p target. The rescued experiments demonstrated that MIAT downregulation or miR-182-5p upregulation aggravated the HG-induced cell damages and activated the NF-κB pathway via the respective regulation of miR-182-5p or GPRC5A. Conclusion Taken together, MIAT functioned as an inhibitory factor in the pathogenesis to impede the development of DN and inactivate the NF-κB pathway via regulating the miR-182-5p/GPRC5A axis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Aidong Sun ◽  
Ningshuang Sun ◽  
Xiao Liang ◽  
Zhenbo Hou

Abstract Background The involvement of circular RNAs (circRNAs) in diabetic nephropathy (DN) has been gradually identified. In this study, we aimed to explore the functions of circRNA F-box/WD repeat-containing protein 12 (circ-FBXW12) in DN development. Methods Reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was performed for the levels of circ-FBXW12, FBXW12 mRNA, microRNA-31-5p (miR-31-5p) and Lin-28 homolog B (LIN28B) mRNA. RNase R assay was used to analyze the stability of circ-FBXW12. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis and 5-ethynyl-2′- deoxyuridine (EdU) assay were employed to evaluate cell viability, cell cycle and proliferation, respectively. Enzyme linked immunosorbent assay (ELISA) was done to measure the concentrations of inflammatory cytokines. Western blot assay was conducted for protein levels. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were examined with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationships among circ-FBXW12, miR-31-5p and LIN28B. Results Circ-FBXW12 level was increased in DN patients’ serums and high glucose (HG)-induced human mesangial cells (HMCs). Circ-FBXW12 knockdown suppressed cell proliferation, arrested cell cycle, reduced extracellular matrix (ECM) production and oxidative stress in HG-induced HMCs. Circ-FBXW12 was identified as the sponge for miR-31-5p, which then directly targeted LIN28B. MiR-31-5p inhibition reversed circ-FBXW12 knockdown-mediated effects on cell proliferation, cell cycle process, ECM production and oxidative in HG-triggered HMCs. Moreover, miR-31-5p overexpression showed similar results with circ-FBXW12 knockdown in HG-stimulated HMC progression, while LIN28B elevation reversed the effects. Conclusion Circ-FBXW12 knockdown suppressed HG-induced HMC growth, inflammation, ECM accumulation and oxidative stress by regulating miR-31-5p/LIN28B axis.


Author(s):  
Guang Li ◽  
Bo Wang ◽  
Xiangchao Ding ◽  
Xinghua Zhang ◽  
Jian Tang ◽  
...  

AbstractExtracellular vesicles (EVs) can be used for intercellular communication by facilitating the transfer of miRNAs from one cell to a recipient cell. MicroRNA (miR)-210-3p is released into the blood during sepsis, inducing cytokine production and promoting leukocyte migration. Thus, the current study aimed to elucidate the role of plasma EVs in delivering miR-210-3p in sepsis-induced acute lung injury (ALI). Plasma EVs were isolated from septic patients, after which the expression of various inflammatory factors was measured using enzyme-linked immunosorbent assay. Cell viability and apoptosis were measured via cell counting kit-8 and flow cytometry. Transendothelial resistance and fluorescein isothiocyanate fluorescence were used to measure endothelial cell permeability. Matrigel was used to examine the tubulogenesis of endothelial cells. The targeting relationship between miR-210-3p and ATG7 was assessed by dual-luciferase reporter assays. The expression of ATG7 and autophagy-related genes was determined to examine autophagic activation. A sepsis mouse model was established by cecal ligation and puncture (CLP)-induced surgery. The level of miR-210-3p was highly enriched in septic EVs. MiR-210-3p enhanced THP-1 macrophage inflammation, BEAS-2B cell apoptosis, and HLMVEC permeability while inhibiting angiogenesis and cellular activity. MiR-210-3p overexpression reduced ATG7 and LC3II/LC3I expression and increased P62 expression. Improvements in vascular density and autophagosome formation, increased ATG7 expression, and changes in the ratio of LC3II/LC3I were detected, as well as reduced P62 expression, in adenovirus-anti-miR-210-3p treated mice after CLP injury. Taken together, the key findings of the current study demonstrate that plasma EVs carrying miR-210-3p target ATG7 to regulate autophagy and inflammatory activation in a sepsis-induced ALI model.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuhua Su ◽  
Yajing Liu ◽  
Chao Ma ◽  
Chunxiao Guan ◽  
Xiufen Ma ◽  
...  

Abstract Background Long non-coding RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1) was found to be elevated in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLSs). However, whether HAND2-AS1 functions as an exosomal lncRNA related to mesenchymal stem cells (MSCs) in RA progression is unknown. Methods The expression of HAND2-AS1, microRNA (miR)-143-3p, and tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) was detected using quantitative real-time polymerase chain reaction and Western blot. Cell proliferation, apoptosis, migration, and invasion were detected using cell counting kit-8, flow cytometry, and wound healing and transwell assays. The levels of tumor necrosis factor-α (TNF-α) and interleukins (IL)-6 were analyzed using enzyme-linked immunosorbent assay. The level of phosphorylated-p65 was examined by Western blot. The binding interaction between miR-143-3p and HAND2-AS1 or TNFAIP3 was confirmed by the dual-luciferase reporter and RIP assays. Exosomes were isolated by ultracentrifugation and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Results HAND2-AS1 was lowly expressed in RA synovial tissues, and HAND2-AS1 re-expression suppressed the proliferation, motility, and inflammation and triggered the apoptosis in RA-FLSs via the inactivation of NF-κB pathway. Mechanistically, HAND2-AS1 directly sponged miR-143-3p and positively regulated TNFAIP3 expression, the target of miR-143-3p. Moreover, the effects of HAND2-AS1 on RA-FLSs were partially attenuated by miR-143-3p upregulation or TNFAIP3 knockdown. HAND2-AS1 could be packaged into hMSC-derived exosomes and absorbed by RA-FLSs, and human MSC-derived exosomal HAND2-AS1 also repressed above malignant biological behavior of RA-FLSs. Conclusion MSC-derived exosomes participated in the intercellular transfer of HAND2-AS1 and suppressed the activation of RA-FLSs via miR-143-3p/TNFAIP3/NF-κB pathway, which provided a novel insight into the pathogenesis and treatment of RA.


Author(s):  
Lijun Wu ◽  
Ke Li ◽  
Wei Lin ◽  
Jianjiang Liu ◽  
Qiang Qi ◽  
...  

AbstractStudies have confirmed the relationship between dysregulated long noncoding RNAs and melanoma pathogenesis. However, the regulatory functions of long intergenic non-protein coding RNA 1291 (LINC01291) in melanoma remain unknown. Therefore, we evaluated LINC01291 expression in melanoma and explored its roles in regulating tumor behaviors. Further, the molecular events via which LINC01291 affects melanoma cells were investigated. LINC01291 expression in melanoma cells was analyzed using The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Functional assays, including the Cell Counting Kit-8 assay, colony formation assay, flow cytometry, cell migration and invasion assays, and tumor xenograft models, were used to examine LINC01291’s role in melanoma cells. Additionally, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, and western blotting were conducted to determine the tumor-promoting mechanism of LINC01291. LINC01291 was upregulated in melanoma tissues and cell lines. Following LINC01291 knockdown, cell proliferation, colony formation, migration, and invasion were diminished, whereas apoptosis was enhanced and the cell cycle was arrested at G0/G1. In addition, loss of LINC01291 decreased the chemoresistance of melanoma cells to cisplatin. Furthermore, LINC01291 interference inhibited melanoma tumor growth in vivo. Mechanistically, LINC01291 functions as a competing endogenous RNA by sponging microRNA-625-5p (miR-625-5p) in melanoma cells and maintaining insulin-like growth factor 1 receptor (IGF-1R) expression. Rescue experiments revealed that the roles induced by LINC01291 depletion in melanoma cells could be reversed by suppressing miR-625-5p or overexpressing IGF-1R. Our study identified the LINC01291/miR-625-5p/IGF-1R competing endogenous RNA pathway in melanoma cells, which may represent a novel diagnostic biomarker and an effective therapeutic target for melanoma.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


Sign in / Sign up

Export Citation Format

Share Document