scholarly journals Circ-FBXW12 aggravates the development of diabetic nephropathy by binding to miR-31-5p to induce LIN28B

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Aidong Sun ◽  
Ningshuang Sun ◽  
Xiao Liang ◽  
Zhenbo Hou

Abstract Background The involvement of circular RNAs (circRNAs) in diabetic nephropathy (DN) has been gradually identified. In this study, we aimed to explore the functions of circRNA F-box/WD repeat-containing protein 12 (circ-FBXW12) in DN development. Methods Reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was performed for the levels of circ-FBXW12, FBXW12 mRNA, microRNA-31-5p (miR-31-5p) and Lin-28 homolog B (LIN28B) mRNA. RNase R assay was used to analyze the stability of circ-FBXW12. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis and 5-ethynyl-2′- deoxyuridine (EdU) assay were employed to evaluate cell viability, cell cycle and proliferation, respectively. Enzyme linked immunosorbent assay (ELISA) was done to measure the concentrations of inflammatory cytokines. Western blot assay was conducted for protein levels. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were examined with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationships among circ-FBXW12, miR-31-5p and LIN28B. Results Circ-FBXW12 level was increased in DN patients’ serums and high glucose (HG)-induced human mesangial cells (HMCs). Circ-FBXW12 knockdown suppressed cell proliferation, arrested cell cycle, reduced extracellular matrix (ECM) production and oxidative stress in HG-induced HMCs. Circ-FBXW12 was identified as the sponge for miR-31-5p, which then directly targeted LIN28B. MiR-31-5p inhibition reversed circ-FBXW12 knockdown-mediated effects on cell proliferation, cell cycle process, ECM production and oxidative in HG-triggered HMCs. Moreover, miR-31-5p overexpression showed similar results with circ-FBXW12 knockdown in HG-stimulated HMC progression, while LIN28B elevation reversed the effects. Conclusion Circ-FBXW12 knockdown suppressed HG-induced HMC growth, inflammation, ECM accumulation and oxidative stress by regulating miR-31-5p/LIN28B axis.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Kai Ren ◽  
Buying Li ◽  
Liqing Jiang ◽  
Zhiheng Liu ◽  
Fan Wu ◽  
...  

Background. Acute myocardial infarction (AMI) is a common cardiovascular disease with high disability and mortality. Circular RNAs (circRNAs) are implicated in the pathomechanism of multiple human diseases, including AMI. This study intended to explore the function and working mechanism of a novel circRNA circ_0023461 in hypoxia-induced cardiomyocytes. Methods. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were implemented to detect RNA and protein expression. Cell counting kit-8 (CCK8) assay and 5-ethynyl-2 ′ -deoxyuridine (Edu) assay were conducted to analyze cell viability and proliferation ability. Cell migration and apoptosis were assessed by Transwell assay and flow cytometry. Cell oxidative stress was analyzed using the commercial kits. Enzyme-linked immunosorbent assay (ELISA) was conducted to analyze cell inflammation. Cell glycolytic metabolism was evaluated using the commercial kits. Dual-luciferase reporter assay and RNA pull-down assay were conducted to verify the intermolecular interactions. Results. circ_0023461 expression was upregulated in AMI patients and hypoxia-induced AC16 cells. Hypoxia restrained the viability, proliferation, migration, and glycolysis and induced the apoptosis, oxidative stress, and inflammation of AC16 cells, and these effects were attenuated by the silence of circ_0023461. MicroRNA-370-3p (miR-370-3p) was verified as a target of circ_0023461, and circ_0023461 silencing-mediated protective effects in hypoxia-induced cardiomyocytes were partly alleviated by the knockdown of miR-370-3p. miR-370-3p interacted with the 3 ′ untranslated region (3 ′ UTR) of phosphodiesterase 4D (PDE4D), and PDE4D overexpression partly reversed miR-370-3p overexpression-induced protective effects in hypoxia-induced cardiomyocytes. circ_0023461 can upregulate PDE4D expression by acting as a molecular sponge for miR-370-3p in AC16 cells. Conclusion. circ_0023461 knockdown attenuated hypoxia-induced dysfunction in AC16 cells partly by targeting the miR-370-3p/PDE4D axis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1336-1349
Author(s):  
Qianlan Dong ◽  
Qiong Wang ◽  
Xiaohui Yan ◽  
Xiaoming Wang ◽  
Zhenjiang Li ◽  
...  

Abstract Background Diabetic nephropathy (DN) is a common diabetic complication. Long noncoding RNAs (lncRNAs) have been identified as essential regulators in DN progression. This study is devoted to the research of lncRNA-myocardial infarction-associated transcript (MIAT) in DN. Methods DN cell model was established by high glucose (HG) treatment for human renal tubular epithelial cells (HK-2). Cell viability and colonizing capacity were analyzed by Cell Counting Kit-8 (CCK-8) and colony formation assay. Apoptosis was assessed via caspase-3 detection and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used for evaluating inflammation. The protein determination was completed using western blot. MIAT, microRNA-182-5p (miR-182-5p), and G protein-coupled receptor class C group 5 member A (GPRC5A) levels were all examined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Intergenic binding was verified using dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. Results HG induced the inhibition of cell growth, but accelerated apoptosis and inflammation as well as the activation of nuclear factor kappa B (NF-κB) pathway. MIAT reestablishment prevented the HG-induced cell damages and NF-κB signal activation. Mechanistically, MIAT was proved as a miR-182-5p sponge and regulated the expression of GPRC5A that was a miR-182-5p target. The rescued experiments demonstrated that MIAT downregulation or miR-182-5p upregulation aggravated the HG-induced cell damages and activated the NF-κB pathway via the respective regulation of miR-182-5p or GPRC5A. Conclusion Taken together, MIAT functioned as an inhibitory factor in the pathogenesis to impede the development of DN and inactivate the NF-κB pathway via regulating the miR-182-5p/GPRC5A axis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Heyun Li ◽  
Xia Zhang ◽  
Peng Wang ◽  
Xiaoyan Zhou ◽  
Haiying Liang ◽  
...  

Abstract Background Sepsis is life-threatening disease with systemic inflammation and can lead to various diseases, including septic acute kidney injury (AKI). Recently, diverse circular RNAs (circRNAs) are considered to be involved in the development of this disease. In this study, we aimed to elucidate the role of circ-FANCA and the potential action mechanism in sepsis-induced AKI. Methods HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. The expression of circ-FANCA, microRNA-93-5p (miR-93-5p) and oxidative stress responsive 1 (OXSR1) mRNA was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was assessed using cell counting kit-8 (CCK-8) assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. The inflammatory response was monitored according to the release of pro-inflammatory cytokines via enzyme-linked immunosorbent assay (ELISA). The activities of oxidative indicators were examined using the corresponding kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate the interaction between miR-93-5p and circ-FANCA or OXSR1. Protein analysis was conducted through western blot. Results Circ-FANCA was upregulated in septic AKI serum specimens and LPS-treated HK2 cells. Functionally, circ-FANCA knockdown facilitated cell proliferation and restrained apoptosis, inflammation and oxidative stress in LPS-triggered HK2 cells. Further mechanism analysis revealed that miR-93-5p was a target of circ-FANCA and circ-FANCA modulated LPS-induced cell damage by targeting miR-93-5p. Meanwhile, miR-93-5p overexpression repressed LPS-treated HK2 cell injury by sponging OXSR1. Furthermore, circ-FANCA regulated OXSR1 expression by sponging miR-93-5p. Besides, exosome-derived circ-FANCA was upregulated in LPS-induced HK2 cells, which was downregulated by GW4869. Conclusion Circ-FANCA knockdown attenuated LPS-induced HK2 cell injury by regulating OXSR1 expression via targeting miR-93-5p.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ruijie Liu ◽  
Ping Deng ◽  
Yonglian Zhang ◽  
Yonglan Wang ◽  
Cuiping Peng

Abstract Background Circular RNAs (circRNAs) are a class of endogenous single-strand RNA transcripts with crucial regulation in human cancers. The objective of this study is to investigate the role of circ_0082182 in CRC and its specific functional mechanism. Methods The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the levels of circ_0082182, microRNA-411 (miR-411) and microRNA-1205 (miR-1205). Cell proliferation was detected by Cell counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used for determining cell cycle and cell apoptosis. Cell apoptosis was also assessed by caspase3 and caspase9 activities. Cell migration and invasion were examined using scratch assay and transwell assay. The interaction between circ_0082182 and miRNA was validated by the dual-luciferase reporter and biotinylated RNA pull-down assays. Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by Western blot. Xenograft model was established for the research of circ_0082182 in vivo. Results Circ_0082182 was upregulated in CRC and could predict the poor prognosis of CRC patients. Functionally, circ_0082182 promoted CRC cell proliferation, cell cycle progression, and metastasis while inhibited apoptosis. Subsequently, circ_0082182 was shown to act as the sponges of miR-411 and miR-1205. MiR-411 and miR-1205 were identified as tumor inhibitors in CRC. Furthermore, circ_0082182 promoted the CRC progression via sponging miR-411 and miR-1205. Moreover, circ_0082182 facilitated the Wnt/β-catenin pathway and EMT process by targeting miR-411 and miR-1205. In vivo, circ_0082182 accelerated the CRC tumorigenesis and EMT process by activating the Wnt/β-catenin pathway by downregulating the expression of miR-411 or miR-1205. Conclusion This study showed that circ_0082182 functioned as an oncogene in the developing process of CRC by sponging miR-411 or miR-1205 to activate the Wnt/β-catenin pathway. Circ_0082182 might be a molecular target in the diagnosis and treatment of CRC.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1415-1427
Author(s):  
Hui Chen ◽  
Chen Wu ◽  
Liang Luo ◽  
Yuan Wang ◽  
Fangxing Peng

Abstract Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Deng Xiang ◽  
Yugang Li ◽  
Yanshui Lin

In recent years, the mechanism of cancer research has become hotspots of life science and medicine, especially due to the rapid development of molecular medicine and bioinformatics research. Similarly, the molecular mechanism also has received increasing attention in osteosarcoma (OS) research. Also, a considerable amount of research confirmed that circular RNAs (circRNAs) could regulate cancer cell growth and metastasis. This study aimed to explore the effect of a circRNA, circCCDC66, on OS and reveal its potential molecular mechanism. High circCCDC66 expression level was found in OS patient-derived tissue samples and OS cell lines by qRT-PCR. The abilities cell proliferation and metastatic of U2OS and SW1353 cells were then assessed by Cell Counting Kit-8 and transwell assay, respectively. The interaction between circCCDC66 and its target miRNAs were verified by the dual-luciferase reporter assay. Through functional experiments, we found that circCCDC66 knockdown promoted the inhibition of cell proliferation and metastatic of OS cell lines. From mechanistic perspective, circCCDC66 upregulated PTP1B by sponging miR-338-3p. Collectively, our findings demonstrated that circCCDC66 contributed to malignant behaviors of OS cells by miR-338-3p/PTP1B pathway, which suggested circCCDC66/miR-338-3p/PTP1B axis might be a potential therapeutic target.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jing Duan ◽  
Xian-Ling Qian ◽  
Jun Li ◽  
Xing-Hua Xiao ◽  
Xiang-Tong Lu ◽  
...  

Background. Diabetes is a progressive metabolic disease characterized by hyperglycemia. Functional impairment of islet β cells can occur to varying degrees. This impairment can initially be compensated for by proliferation and metabolic changes of β cells. Cell division control protein 42 (Cdc42) and the microRNA (miRNA) miR-29 have important roles in β-cell proliferation and glucose-stimulated insulin secretion (GSIS), which we further explored using the mouse insulinoma cell line MIN6. Methods. Upregulation and downregulation of miR-29a and Cdc42 were accomplished using transient transfection. miR-29a and Cdc42 expression was detected by real-time PCR and western blotting. MIN6 proliferation was detected using a cell counting kit assay. GSIS under high-glucose (20.0 mM) or basal-glucose (5.0 mM) stimulation was detected by enzyme-linked immunosorbent assay. The miR-29a binding site in the Cdc42 mRNA 3′-untranslated region (UTR) was determined using bioinformatics and luciferase reporter assays. Results. miR-29a overexpression inhibited proliferation (P<0.01) and GSIS under high-glucose stimulation (P<0.01). Cdc42 overexpression promoted proliferation (P<0.05) and GSIS under high-glucose stimulation (P<0.05). miR-29a overexpression decreased Cdc42 expression (P<0.01), whereas miR-29a downregulation increased Cdc42 expression (P<0.01). The results showed that the Cdc42 mRNA 3′-UTR is a direct target of miR-29a in vitro. Additionally, Cdc42 reversed miR-29a-mediated inhibition of proliferation and GSIS (P<0.01). Furthermore, miR-29a inhibited β-catenin expression (P<0.01), whereas Cdc42 promoted β-catenin expression (P<0.01). Conclusion. By negatively regulating Cdc42 and the downstream molecule β-catenin, miR-29a inhibits MIN6 proliferation and insulin secretion.


2018 ◽  
Vol 48 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Jiamei Liu ◽  
Danbo Wang ◽  
Zaiqiu Long ◽  
Jing Liu ◽  
Weishan Li

Background/Aims: Circular RNAs (circRNAs) play a significant role in the development and progression of various human cancers. However, the expression and function of circRNAs in cervical cancer (CC) have rarely been explored. The aim of this study was to investigate the biological function of circRNA8924 in CC and elucidate the possible molecular mechanism involved. Methods: Quantitative polymerase chain reaction was used to determine mRNA expression of circRNA8924, miR-518d-5p/519-5p and CBX8 in CC tissues and cells. CBX8 protein expression was measured by Western blotting. The CCK-8 assay was used to evaluate cell proliferation, and the transwell assay to determine cell migration and invasion. The luciferase reporter assay was used to determine the direct regulation of miR-518d-5p/519-5p and circRNA8924 or CBX8 Results: The study demonstrated that the expression level of circRNA8924 in CC was significantly higher than that in the adjacent normal tissues (P < 0.001), and that it was also associated with tumor size, FIGO staging and myometrial invasion. The knockdown of circRNA8924 significantly inhibited the proliferation, migration and invasion of CC cells SiHa and HeLa. The expression level of miR-518d-5p/519-5p was negatively correlated with circRNA8924, and circRNA8924 regulated CBX8 by competitively binding to miR-518d-5p/519-5p. Conclusions: CircRNA8924 is highly expressed in CC tissue and can be considered a competitive endogenous RNA of the miR-518d-5p/519-5p family to promote the malignant biological behavior of CC cells. It is suggested that it may serve as a new biomarker for CC diagnosis and disease progression and provide potential targets for targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document