scholarly journals Non-coding RNAs modulate autophagy in myocardial ischemia-reperfusion injury: a systematic review

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fuwen Huang ◽  
Jingting Mai ◽  
Jingwei Chen ◽  
Yinying He ◽  
Xiaojun Chen

AbstractThe myocardial infarction is the main cause of morbidity and mortality in cardiovascular diseases around the world. Although the timely and complete reperfusion via Percutaneous Coronary Intervention (PCI) or thrombolysis have distinctly decreased the mortality of myocardial infarction, reperfusion itself may lead to supererogatory irreversible myocardial injury and heart function disorders, namely ischemia-reperfusion (I/R) injury. Extensive studies have indicated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play important roles in the progress of myocardial I/R injury, which is closely correlative with cardiomyocytes autophagy. Moreover, autophagy plays an important role in maintaining homeostasis and protecting cells in the myocardial ischemia reperfusion and cardiomyocyte hypoxia-reoxygenation (H/R) progress. In this review, we first introduced the biogenesis and functions of ncRNAs, and subsequently summarized the roles and relevant molecular mechanisms of ncRNAs regulating autophagy in myocardial I/R injury. We hope that this review in addition to develop a better understanding of the physiological and pathological roles of ncRNAs, can also lay a foundation for the therapies of myocardial I/R injury, and even for other related cardiovascular diseases.

2018 ◽  
Vol 27 (8) ◽  
pp. 1256-1268 ◽  
Author(s):  
Tianyu Li ◽  
Yunshu Su ◽  
Xiongli Yu ◽  
Durgahee S.A. Mouniir ◽  
Jackson Ferdinand Masau ◽  
...  

Stem cell transplantation represents a promising therapeutic approach for myocardial ischemia/reperfusion (I/R) injury, where cortical bone-derived stem cells (CBSCs) stand out and hold superior cardioprotective effects on myocardial infarction than other types of stem cells. However, the molecular mechanism underlying CBSCs function on myocardial I/R injury is poorly understood. In a previous study, we reported that Trop2 (trophoblast cell-surface antigen 2) is expressed exclusively on the CBSCs membrane, and is involved in regulation of proliferation and differentiation of CBSCs. In this study, we found that the Trop2 is essential for the ameliorative effects of CBSCs on myocardial I/R-induced heart damage via promoting angiogenesis and inhibiting cardiomyocytes apoptosis in a paracrine manner. Trop2 is required for the colonization of CBSCs in recipient hearts. When Trop2 was knocked out, CBSCs largely lost their functions in lowering myocardial infarction size, improving heart function, enhancing capillary density, and suppressing myocardial cell death. Mechanistically, activating the AKT/GSK3β/β-Catenin signaling axis contributes to the essential role of Trop2 in CBSCs-rendered cardioprotective effects on myocardial I/R injury. In conclusion, maintaining the expression and/or activation of Trop2 in CBSCs might be a promising strategy for treating myocardial infarction, I/R injury, and other related heart diseases.


Epigenomics ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 1733-1748 ◽  
Author(s):  
Wei Xiong ◽  
Yan Qu ◽  
Hongmei Chen ◽  
Jinqiao Qian

Emerging evidence has demonstrated that regulatory noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs) and miRNAs, play crucial roles in the initiation and progress of myocardial ischemia-reperfusion injury (MIRI), which is associated with autophagy, apoptosis and necrosis of cardiomyocytes, as well as oxidative stress, inflammation and mitochondrial dysfunction. LncRNAs serve as a precursor or host of miRNAs and directly/indirectly affecting miRNAs via competitive binding or sponge effects. Simultaneously, miRNAs post-transcriptionally regulate the expression of genes by targeting various mRNA sequences due to their imperfect pairing with mRNAs. This review summarizes the potential regulatory role of lncRNA–miRNA–mRNA axes in MIRI and related molecular mechanisms of cardiac disorders, also provides insight into the potential therapies for MIRI-induced diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
César Daniel Sánchez-Hernández ◽  
Lucero Aidé Torres-Alarcón ◽  
Ariadna González-Cortés ◽  
Alberto N. Peón

Myocardial ischemia reperfusion syndrome is a complex entity where many inflammatory mediators play different roles, both to enhance myocardial infarction-derived damage and to heal injury. In such a setting, the establishment of an effective therapy to treat this condition has been elusive, perhaps because the experimental treatments have been conceived to block just one of the many pathogenic pathways of the disease, or because they thwart the tissue-repairing phase of the syndrome. Either way, we think that a discussion about the pathophysiology of the disease and the mechanisms of action of some drugs may shed some clarity on the topic.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Qun Zheng ◽  
Xiao-Yi Bao ◽  
Peng-Chong Zhu ◽  
Qiang Tong ◽  
Guo-Qing Zheng ◽  
...  

Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1), the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB) when compared with control group (P<0.01). Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P<0.05). Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2388
Author(s):  
Kevin M. Casin ◽  
John W. Calvert

Myocardial ischemia–reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.


2020 ◽  
Author(s):  
Jianfeng Chen ◽  
Mingming Zhang ◽  
Shouyan Zhang ◽  
Junlong Wu ◽  
Shufeng Xue

Abstract Background: This study aimed to investigate the regulatory effect of rno-microRNA-30c-5p (rno-miR-30c-5p) on myocardial ischemia reperfusion (IR) injury in rats and the underlying molecular mechanisms.Methods: A rat model of myocardial IR injury was established. The infarct size was detected by 2,3,5-triphenyltetrazolium chloride staining. The pathologic changes of myocardial tissues were detected by hematoxylin-eosin staining. The apoptosis of myocardial cells was measured by TUNEL staining and flow cytometry. The mRNA expression of rno-miR-30c-5p and Sirtuin 1 (SIRT1) was detected by quantitative real-time PCR. The levels of IL-1β, IL-6 and TNF-α were detected by enzyme linked immunosorbent assay. The protein expression of Bax, Bcl-2, caspase-3, p-IκBα, IκBα, p-NF-κB p65, NF-κB p65 and SIRT1 was detected by Western blot. The interaction between rno-miR-30c-5p and SIRT1 was predicted by TargetScan, and further identified by dual luciferase reporter gene and RNA immunoprecipitation assay.Results: The myocardial IR injury model was successfully established in rats. IR induced the myocardial injury in rats and increased the expression of rno-miR-30c-5p. Overexpression of rno-miR-30c-5p enhanced the inflammation, promoted the apoptosis, and activated NF-κB pathway in IR myocardial cells. SIRT1 was the target gene of rno-miR-30c-5p. Silencing of SIRT1 reversed the effects of rno-miR-30c-5p inhibitor on the apoptosis and NF-κB pathway in IR myocardial cells.Conclusions: Rno-miR-30c-5p promoted the myocardial IR injury in rats through activating NF-κB pathway and down-regulating SIRT1.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cheng-Yin Liu ◽  
Yi Zhou ◽  
Tao Chen ◽  
Jing-Chao Lei ◽  
Xue-Jun Jiang

Arctigenin, one of the active ingredients extracted from Great Burdock (Arctium lappa) Achene, has been found to relieve myocardial infarction injury. However, the specific mechanism of Arctigenin against myocardial infarction remains largely unknown. Here, both acute myocardial ischemia-reperfusion injury (AMI/R) rat model and oxygen glucose deprivation (OGD)-induced myocardial cell injury model were constructed to explore the underlying role of AMPK/SIRT1 pathway in Arctigenin-mediated effects. The experimental data in our study demonstrated that Arctigenin ameliorated OGD-mediated cardiomyocytes apoptosis, inflammation and oxidative stress in a dose-dependent manner. Besides, Arctigenin activated AMPK/SIRT1 pathway and downregulated NF-κB phosphorylation in OGD-treated cardiomyocytes, while inhibiting AMPK or SIRT1 by the Compound C (an AMPK inhibitor) or SIRT1-IN-1 (a SIRT1 inhibitor) significantly attenuated Arctigenin-exerted protective effects on cardiomyocytes. In the animal experiments, Arctigenin improved the heart functions and decreased infarct size of the AMI/R-rats, accompanied with downregulated oxidative stress, inflammation and apoptotic levels in the heart tissues. What’s more, Arctigenin enhanced the AMPK/SIRT1 pathway and repressed NF-κB pathway activation. Taken together, our data indicated that Arctigenin reduced cardiomyocytes apoptosis against AMI/R-induced oxidative stress and inflammation at least via AMPK/SIRT1 pathway.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2134
Author(s):  
Alessandro Bellis ◽  
Ciro Mauro ◽  
Emanuele Barbato ◽  
Giuseppe Di Gioia ◽  
Daniela Sorriento ◽  
...  

During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a “multi-targeted cardioprotective therapy”, defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.


Cardiology ◽  
2016 ◽  
Vol 134 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Peng Liu ◽  
Wei You ◽  
Lin Lin ◽  
Yongluan Lin ◽  
Xiuying Tang ◽  
...  

Objective: This study explores the effects of helix B surface peptide (HBSP) on myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and oxidative stress damage in mouse hearts subjected to myocardial ischemia-reperfusion injury (MIRI) and also the mechanisms underlying the effects. Method: Male adult mice were subjected to 45 min of ischemia followed by 2 h of reperfusion; 5 min before the reperfusion, they were treated with HBSP or vehicle. MIRI-induced IS, cardiomyocyte apoptosis and cardiac functional impairment were determined and compared. Western blot analysis was then conducted to elucidate the mechanism of HBSP after treatment. Results: HBSP administration before reperfusion significantly reduced the myocardial IS, decreased cardiomyocyte apoptosis, reduced the activities of superoxide dismutase and malondialdehyde and partially preserved heart function. As demonstrated by the Western blot analysis, HBSP after treatment upregulated Akt/GSK-3β/ERK and STAT-3 phosphorylation; these inhibitors, in turn, weakened the beneficial effects of HBSP. Conclusion: HBSP plays a protective role in MIRI in mice by inhibiting cardiomyocyte apoptosis, reducing the MIRI-induced IS, oxidative stress and improving the heart function after MIRI. The mechanism underlying these effects of HBSP is related to the activation of the RISK (reperfusion injury salvage kinase, Akt/GSK-3β/ERK) and SAFE (STAT-3) pathways.


Sign in / Sign up

Export Citation Format

Share Document