scholarly journals VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Farida El Gaamouch ◽  
Mickael Audrain ◽  
Wei-Jye Lin ◽  
Noam Beckmann ◽  
Cheng Jiang ◽  
...  

Abstract Background Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) identified VGF as a major driver of Alzheimer’s disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. Methods We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. Results We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. Conclusions These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nicola Davis ◽  
Bibiana C. Mota ◽  
Larissa Stead ◽  
Emily O. C. Palmer ◽  
Laura Lombardero ◽  
...  

Abstract Background Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer’s disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. Methods To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. Results Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control. Conclusions Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-17 ◽  
Author(s):  
Dong Kyu Kim ◽  
Dohyun Han ◽  
Joonho Park ◽  
Hyunjung Choi ◽  
Jong-Chan Park ◽  
...  

AbstractAlzheimer’s disease (AD), which is the most common type of dementia, is characterized by the deposition of extracellular amyloid plaques. To understand the pathophysiology of the AD brain, the assessment of global proteomic dynamics is required. Since the hippocampus is a major region affected in the AD brain, we performed hippocampal analysis and identified proteins that are differentially expressed between wild-type and 5XFAD model mice via LC-MS methods. To reveal the relationship between proteomic changes and the progression of amyloid plaque deposition in the hippocampus, we analyzed the hippocampal proteome at two ages (5 and 10 months). We identified 9,313 total proteins and 1411 differentially expressed proteins (DEPs) in 5- and 10-month-old wild-type and 5XFAD mice. We designated a group of proteins showing the same pattern of changes as amyloid beta (Aβ) as the Aβ-responsive proteome. In addition, we examined potential biomarkers by investigating secretory proteins from the Aβ-responsive proteome. Consequently, we identified vitamin K-dependent protein S (PROS1) as a novel microglia-derived biomarker candidate in the hippocampus of 5XFAD mice. Moreover, we confirmed that the PROS1 level in the serum of 5XFAD mice increases as the disease progresses. An increase in PROS1 is also observed in the sera of AD patients and shows a close correlation with AD neuroimaging markers in humans. Therefore, our quantitative proteome data obtained from 5XFAD model mice successfully predicted AD-related biological alterations and suggested a novel protein biomarker for AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alex B. Speers ◽  
Manuel García-Jaramillo ◽  
Alicia Feryn ◽  
Donald G. Matthews ◽  
Talia Lichtenberg ◽  
...  

Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer’s disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer’s disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.


2020 ◽  
Author(s):  
Nicola Davis ◽  
Bibiana C. Mota ◽  
Larissa Stead ◽  
Emily O. C. Palmer ◽  
Laura Lombardero ◽  
...  

Abstract Background: Astrocytes provide vital support to neurons in normal and pathological conditions. In Alzheimer’s disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology and synaptic density in AD remain unclear.Methods: To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24h. Results: Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analysed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control. Conclusions: Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jieun Kim ◽  
Jin-Hee Park ◽  
Seon Kyeong Park ◽  
Hyang-Sook Hoe

Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1β by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain.


2022 ◽  
Vol 15 ◽  
Author(s):  
Kirsten L. Viola ◽  
Maira A. Bicca ◽  
Adrian M. Bebenek ◽  
Daniel L. Kranz ◽  
Vikas Nandwana ◽  
...  

Improvements have been made in the diagnosis of Alzheimer’s disease (AD), manifesting mostly in the development of in vivo imaging methods that allow for the detection of pathological changes in AD by magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Many of these imaging methods, however, use agents that probe amyloid fibrils and plaques–species that do not correlate well with disease progression and are not present at the earliest stages of the disease. Amyloid β oligomers (AβOs), rather, are now widely accepted as the Aβ species most germane to AD onset and progression. Here we report evidence further supporting the role of AβOs as pathological instigators of AD and introduce promising anti-AβO diagnostic probes capable of distinguishing the 5xFAD mouse model from wild type mice by PET and MRI. In a developmental study, Aβ oligomers in 5xFAD mice were found to appear at 3 months of age, just prior to the onset of memory dysfunction, and spread as memory worsened. The increase of AβOs is prominent in the subiculum and correlates with concomitant development of reactive astrocytosis. The impact of these AβOs on memory is in harmony with findings that intraventricular injection of synthetic AβOs into wild type mice induced hippocampal dependent memory dysfunction within 24 h. Compelling support for the conclusion that endogenous AβOs cause memory loss was found in experiments showing that intranasal inoculation of AβO-selective antibodies into 5xFAD mice completely restored memory function, measured 30–40 days post-inoculation. These antibodies, which were modified to give MRI and PET imaging probes, were able to distinguish 5xFAD mice from wild type littermates. These results provide strong support for the role of AβOs in instigating memory loss and salient AD neuropathology, and they demonstrate that AβO selective antibodies have potential both for therapeutics and for diagnostics.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 117-117
Author(s):  
Asli Uyar ◽  
Ravi Pandey ◽  
Christoph Preuss ◽  
Kevin Kotredes ◽  
Gareth Howell ◽  
...  

Abstract Alzheimer’s Disease (AD) is characterized by multiple clinical phenotypes and molecular signatures at different stages of the disease and aging is the major risk factor for sporadic AD. Aging and AD are linked at molecular, cellular and systems level with commonalities in inflammation and associated immune response in the brain. Mouse models of AD were developed that mimic various aspects of aging-associated neurodegeneration and inflammation. Research in mouse models of AD showed that drugs and treatments designed for AD can decelerate aging phenotypes suggesting efficient utilization of these models in aging research. We analyzed RNA-Seq transcriptomic data from transgenic mouse models of familial AD (APP/PS1 and 5XFAD) and knock-in mouse models of late-onset AD (APOE and TREM2) at the ages between 4-months and 24-months. The number of differentially expressed genes between transgenic/knock-in and WT mice increased by age in all mouse models. Gene set enrichment analysis identified metabolic pathways, including oxidative phosphorylation, altered in an age and genotype related manner in the brain of APP/PS1 and 5XFAD mice that recapitulate major features of amyloid pathology. Immunity related pathways were enriched in APOE4 model carrying Trem2*R47H mutation at >12 months-old. We also mapped the transcriptional signatures to co-expression gene modules of human LOAD from the AMP-AD consortium and observed correlations specific to each mouse model. Our study provides a detailed view of how the aging interacts with AD-relevant pathologies at the transcriptome level and demonstrates potential translational relevance of the AD mouse models in the context of human aging.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Tal Ganz ◽  
Nina Fainstein ◽  
Amit Elad ◽  
Marva Lachish ◽  
Smadar Goldfarb ◽  
...  

Abstract Background Neurodegeneration is considered the consequence of misfolded proteins’ deposition. Little is known about external environmental effects on the neurodegenerative process. Infectious agent-derived pathogen-associated molecular patterns (PAMPs) activate microglia, key players in neurodegenerative diseases. We hypothesized that systemic microbial pathogens may accelerate neurodegeneration in Alzheimer’s disease (AD) and that microglia play a central role in this process. Methods We examined the effect of an infectious environment and of microbial Toll-like receptor (TLR) agonists on cortical neuronal loss and on microglial phenotype in wild type versus 5xFAD transgenic mice, carrying mutated genes associated with familial AD. Results We examined the effect of a naturally bred environment on the neurodegenerative process. Earlier and accelerated cortical neuron loss occurred in 5xFAD mice housed in a natural (“dirty”) environment than in a specific-pathogen-free (SPF) environment, without increasing the burden of Amyloid deposits and microgliosis. Neuronal loss occurred in a microglia-rich cortical region but not in microglia-poor CA regions of the hippocampus. Environmental exposure had no effect on cortical neuron density in wild-type mice. To model the neurodegenerative process caused by the natural infectious environment, we injected systemically the bacterial endotoxin lipopolysaccharide (LPS), a TLR4 agonist PAMP. LPS caused cortical neuronal death in 5xFAD, but not wt mice. We used the selective retinoic acid receptor α agonist Am580 to regulate microglial activation. In primary microglia isolated from 5xFAD mice, Am580 markedly attenuated TLR agonists-induced iNOS expression, without canceling their basic immune response. Intracerebroventricular delivery of Am580 in 5xFAD mice reduced significantly the fraction of (neurotoxic) iNOS + microglia and increased the fraction of (neuroprotective) TREM2 + microglia. Furthermore, intracerebroventricular delivery of Am580 prevented neurodegeneration induced by microbial TLR agonists. Conclusions Exposure to systemic infections causes neurodegeneration in brain regions displaying amyloid pathology and high local microglia density. AD brains exhibit increased susceptibility to microbial PAMPs’ neurotoxicity, which accelerates neuronal death. Microglial modulation protects the brain from microbial TLR agonist PAMP-induced neurodegeneration.


2021 ◽  
Vol 9 (12) ◽  
pp. 2548
Author(s):  
Francesco Valeri ◽  
Malena dos Santos Guilherme ◽  
Fuqian He ◽  
Nicolai M. Stoye ◽  
Andreas Schwiertz ◽  
...  

Alzheimer’s disease is a progressive neurodegenerative disorder affecting around 30 million patients worldwide. The predominant sporadic variant remains enigmatic as the underlying cause has still not been identified. Since efficient therapeutic treatments are still lacking, the microbiome and its manipulation have been considered as a new, innovative approach. 5xFAD Alzheimer’s disease model mice were subjected to one-time fecal material transfer after antibiotics-treatment using two types of inoculation: material derived from the caecum of age-matched (young) wild type mice or from middle aged, 1 year old (old) wild type mice. Mice were profiled after transfer for physiological parameters, microbiome, behavioral tasks, and amyloid deposition. A single time transfer of cecal material from the older donor group established an aged phenotype in the recipient animals as indicated by elevated cultivatable fecal Enterobacteriaceae and Lactobacillaceae representative bacteria, a decreased Firmicutes amount as assessed by qPCR, and by increased levels of serum LPS binding protein. While behavioral deficits were not accelerated, single brain regions (prefrontal cortex and dentate gyrus) showed higher plaque load after transfer of material from older animals. We could demonstrate that the age of the donor of cecal material might affect early pathological hallmarks of Alzheimer’s disease. This could be relevant when considering new microbiome-based therapies for this devastating disorder.


Sign in / Sign up

Export Citation Format

Share Document