scholarly journals Centella asiatica Alters Metabolic Pathways Associated With Alzheimer’s Disease in the 5xFAD Mouse Model of ß-Amyloid Accumulation

2021 ◽  
Vol 12 ◽  
Author(s):  
Alex B. Speers ◽  
Manuel García-Jaramillo ◽  
Alicia Feryn ◽  
Donald G. Matthews ◽  
Talia Lichtenberg ◽  
...  

Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer’s disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer’s disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.

2020 ◽  
Vol 13 (7) ◽  
pp. 150 ◽  
Author(s):  
Anishchal A. Pratap ◽  
R. M. Damian Holsinger

Metabolic syndromes share common pathologies with Alzheimer’s disease (AD). Adiponectin, an adipocyte-derived protein, regulates energy metabolism via its receptors, AdipoR1 and AdipoR2. To investigate the distribution of adiponectin receptors (AdipoRs) in Alzheimer’s, we examined their expression in the aged 5XFAD mouse model of AD. In age-matched wild-type mice, we observed neuronal expression of both ARs throughout the brain as well as endothelial expression of AdipoR1. The pattern of receptor expression in the aged 5XFAD brain was significantly perturbed. Here, we observed decreased neuronal expression of both ARs and decreased endothelial expression of AdipoR1, but robust expression of AdipoR2 in activated astrocytes. We also observed AdipoR2-expressing astrocytes in the dorsomedial hypothalamic and thalamic mediodorsal nuclei, suggesting the possibility that astrocytes utilise AdipoR2 signalling to fuel their activated state in the AD brain. These findings provide further evidence of a metabolic disturbance and demonstrate a potential shift in energy utilisation in the AD brain, supporting imaging studies performed in AD patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nicola Davis ◽  
Bibiana C. Mota ◽  
Larissa Stead ◽  
Emily O. C. Palmer ◽  
Laura Lombardero ◽  
...  

Abstract Background Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer’s disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. Methods To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. Results Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control. Conclusions Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.


2021 ◽  
pp. 1-12
Author(s):  
Fanglei Han ◽  
Jia Zhao ◽  
Guoqing Zhao

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease which shows a set of symptoms involving cognitive changes and psychological changes. Given that AD is the most common form of dementia in aging population and the increasing demand for anesthesia/surgery with aging, there has been significant interest in the exact impact of volatile anesthetics on cognitive function and pathological alterations in AD population. Objective: This study aimed to investigate behavioral changes and neuropathology in the 5xFAD mouse model of Alzheimer’s disease with short-term exposure or long-term exposure to desflurane, sevoflurane, or isoflurane. Methods: In this study, we exposed 5xFAD mouse model of AD to isoflurane, sevoflurane, or desflurane in two different time periods (30 min and 6 h), and the memory related behaviors as well as the pathological changes in 5xFAD mice were evaluated 7 days after the anesthetic exposure. Results: We found that short-term exposure to volatile anesthetics did not affect hippocampus dependent memory and the amyloid-β (Aβ) deposition in the brain. However, long-term exposure to sevoflurane or isoflurane significantly increased the Aβ deposition in CA1 and CA3 regions of hippocampus, as well as the glial cell activation in amygdala. Besides, the PSD-95 expression was decreased in 5xFAD mice with exposure to sevoflurane or isoflurane and the caspase-3 activation was enhanced in isoflurane, sevoflurane, and desflurane groups. Conclusion: Our results demonstrate the time-dependent effects of common volatile anesthetics and implicate that desflurane has the potential benefits to prolonged anesthetic exposure in AD patients.


2020 ◽  
Vol 6 (31) ◽  
pp. eaba0466 ◽  
Author(s):  
Chun Chen ◽  
Eun Hee Ahn ◽  
Seong Su Kang ◽  
Xia Liu ◽  
Ashfaqul Alam ◽  
...  

The gut-brain axis is bidirectional, and gut microbiota influence brain disorders including Alzheimer’s disease (AD). CCAAT/enhancer binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling spatiotemporally mediates AD pathologies in the brain via cleaving both β-amyloid precursor protein and Tau. We show that gut dysbiosis occurs in 5xFAD mice, and is associated with escalation of the C/EBPβ/AEP pathway in the gut with age. Unlike that of aged wild-type mice, the microbiota of aged 3xTg mice accelerate AD pathology in young 3xTg mice, accompanied by active C/EBPβ/AEP signaling in the brain. Antibiotic treatment diminishes this signaling and attenuates amyloidogenic processes in 5xFAD, improving cognitive functions. The prebiotic R13 inhibits this pathway and suppresses amyloid aggregates in the gut. R13-induced Lactobacillus salivarius antagonizes the C/EBPβ/AEP axis, mitigating gut leakage and oxidative stress. Our findings support the hypothesis that C/EBPβ/AEP signaling is activated by gut dysbiosis, implicated in AD pathologies in the gut.


2020 ◽  
Vol 21 (12) ◽  
pp. 4532 ◽  
Author(s):  
Sujin Kim ◽  
Hyunju Chung ◽  
Han Ngoc Mai ◽  
Yunkwon Nam ◽  
Soo Jung Shin ◽  
...  

Alzheimer’s disease (AD) is the most common type of dementia. AD involves major pathologies such as amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. During the progression of AD, microglia can be polarized from anti-inflammatory M2 to pro-inflammatory M1 phenotype. The activation of triggering receptor expressed on myeloid cells 2 (TREM2) may result in microglia phenotype switching from M1 to M2, which finally attenuated Aβ deposition and memory loss in AD. Low-dose ionizing radiation (LDIR) is known to ameliorate Aβ pathology and cognitive deficits in AD; however, the therapeutic mechanisms of LDIR against AD-related pathology have been little studied. First, we reconfirm that LDIR (two Gy per fraction for five times)-treated six-month 5XFAD mice exhibited (1) the reduction of Aβ deposition, as reflected by thioflavins S staining, and (2) the improvement of cognitive deficits, as revealed by Morris water maze test, compared to sham-exposed 5XFAD mice. To elucidate the mechanisms of LDIR-induced inhibition of Aβ accumulation and memory loss in AD, we examined whether LDIR regulates the microglial phenotype through the examination of levels of M1 and M2 cytokines in 5XFAD mice. In addition, we investigated the direct effects of LDIR on lipopolysaccharide (LPS)-induced production and secretion of M1/M2 cytokines in the BV-2 microglial cells. In the LPS- and LDIR-treated BV-2 cells, the M2 phenotypic marker CD206 was significantly increased, compared with LPS- and sham-treated BV-2 cells. Finally, the effect of LDIR on M2 polarization was confirmed by detection of increased expression of TREM2 in LPS-induced BV2 cells. These results suggest that LDIR directly induced phenotype switching from M1 to M2 in the brain with AD. Taken together, our results indicated that LDIR modulates LPS- and Aβ-induced neuroinflammation by promoting M2 polarization via TREM2 expression, and has beneficial effects in the AD-related pathology such as Aβ deposition and memory loss.


2020 ◽  
Author(s):  
Jahirul Islam ◽  
Jung-Ah Cho ◽  
Ju-yong Kim ◽  
Kyung-Sun Park ◽  
Young-Jae koh ◽  
...  

Abstract Amyloid β (Aβ) and/or ATP activates NLRP3 inflammasome (N3I) by P2 × 7R ion channel of microglia, which is crucial in neuroinflammation shown in Alzheimer’s disease (AD). Due to polymorphisms, subtypes, and ubiquitous expression of P2 × 7R, inhibition of P2 × 7R has not been effective for AD. We first report that GPCR19 is a prerequisite for P2 × 7R-mediated N3I activation and Taurodeoxycholate (TDCA), a GPCR19 ligand, inhibited the priming phase of N3I activation, suppressed P2 × 7R expression and P2 × 7R-mediated Ca++ mobilization, and N3I oligomerization which is essential for production of IL-1β/IL-18. Further, TDCA increased expression of scavenger receptor (SR) A, enhanced phagocytosis of Aβ, and decreased Aβ plaque numbers in the brain of 5x Familial Alzheimer’s disease (5xFAD) mice. TDCA also reduced microgliosis, prevented neuronal loss, and improved memory function of 5xFAD mice. The pleiotropic roles of GPCR19 in P2 × 7-mediated N3I activation suggest that targeting GPCR19 might resolve neuroinflammation in AD patients.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mengrong Zhang ◽  
Liting Zhong ◽  
Xiu Han ◽  
Guoyin Xiong ◽  
Di Xu ◽  
...  

One of the major challenges in treating Alzheimer's disease (AD) is its early diagnosis. Increasing data from clinical and animal research indicate that the retina may facilitate an early diagnosis of AD. However, a previous study on the 5xFAD (a fast AD model), showing retinal changes before those in the brain, has been questioned because of the involvement of the retinal degeneration allele Pde6brd1. Here, we tested in parallel, at 4 and 6 months of age, both the retinal and the brain structure and function in a 5xFAD mouse line that carries no mutation of rd1. In the three tested regions of the 5xFAD brain (hippocampus, visual cortex, and olfactory bulb), the Aβ plaques were more numerous than in wild-type (WT) littermates already at 4 months, but deterioration in the cognitive behavioral test and long-term potentiation (LTP) lagged behind, showing significant deterioration only at 6 months. Similarly in the retina, structural changes preceded functional decay. At 4 months, the retina was generally normal except for a thicker outer nuclear layer in the middle region than WT. At 6 months, the visual behavior (as seen by an optomotor test) was clearly impaired. While the full-field and pattern electroretinogram (ERG) responses were relatively normal, the light responses of the retinal ganglion cells (measured with multielectrode-array recording) were decreased. Structurally, the retina became abnormally thick with few more Aβ plaques and activated glia cells. In conclusion, the timeline of the degenerative processes in the retina and the brain is similar, supporting the use of non-invasive methods to test the retinal structure and function to reflect changes in the brain for early AD diagnosis.


2020 ◽  
Author(s):  
Tasha R. Womack ◽  
Craig Vollert ◽  
Odochi Nwoko ◽  
Monika Schmitt ◽  
Sagi Montazari ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies, while epidemiological and experimental evidence suggests that the use of anti-inflammatory agents may be neuroprotective. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression significantly worsened multiple measures associated with amyloid disease pathologies. Mice overexpressing both amyloid and PGI2 exhibited impaired learning and memory and increased anxiety-like behavior compared with non-transgenic and PGI2 control mice. PGI2 overexpression accelerated the development of amyloid accumulation in the brain and selectively increased the production of soluble amyloid-β 42. PGI2 damaged the microvasculature through alterations in vascular length and branching; amyloid expression exacerbated these effects. Our findings demonstrate that chronic prostacyclin expression plays a novel and unexpected role that hastens the development of the AD phenotype.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253320
Author(s):  
Koji Fukui ◽  
Shunsuke Kimura ◽  
Yugo Kato ◽  
Masahiro Kohno

Far infrared light has been used in many medical procedures. However, the detailed biological mechanisms of infrared light’s effects have not yet been elucidated. Many researchers have pointed out the thermal effects of treatments such as infrared saunas, which are known to increase blood flow. Alzheimer’s disease (AD) is associated with gradual decreases in brain blood flow and resulting dementia. In this study, we attempted to clarify the beneficial effects of far infrared light using the 5xFAD mouse, a transgenic model of AD. We exposed 5xFAD mice to far infrared light for 5 months. Among the far infrared-exposed AD mice, body weights were significantly decreased, and the levels of nerve growth factor and brain-derived neurotrophic factor protein were significantly increased in selected brain areas (compared to those in non-irradiated AD mice). However, cognition and motor function (as assessed by Morris water maze and Rota Rod tests, respectively) did not differ significantly between the irradiated and non-irradiated AD mouse groups. These results indicated that exposure to far infrared light may have beneficial biological effects in AD mice. However, the experimental schedule and methods may need to be modified to obtain clearer results.


Sign in / Sign up

Export Citation Format

Share Document