scholarly journals Identifying climate-sensitive infectious diseases in animals and humans in Northern regions

2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Anna Omazic ◽  
Helena Bylund ◽  
Sofia Boqvist ◽  
Ann Högberg ◽  
Christer Björkman ◽  
...  

Abstract Background General knowledge on climate change effects and adaptation strategies has increased significantly in recent years. However, there is still a substantial information gap regarding the influence of climate change on infectious diseases and how these diseases should be identified. From a One Health perspective, zoonotic infections are of particular concern. The climate in Northern regions is changing faster than the global average. This study sought to identify climate-sensitive infectious diseases (CSIs) of relevance for humans and/or animals living in Northern regions. Inclusion criteria for CSIs were constructed using expert assessments. Based on these principles, 37 potential CSIs relevant for Northern regions were identified. A systematic literature search was performed in three databases using an explicit stepwise approach to determine whether the literature supports selection of these 37 potential CSIs. Results In total, 1275 nominated abstracts were read and categorised using predefined criteria. Results showed that arthropod vector-borne diseases in particular are recognised as having potential to expand their distribution towards Northern latitudes and that tick-borne encephalitis and borreliosis, midge-borne bluetongue and the parasitic infection fasciolosis can be classified as climate-sensitive. Many of the other potential CSIs considered are affected by extreme weather events, but could not be clearly classified as climate-sensitive. An additional literature search comparing awareness of climate influences on potential CSIs between 1997–2006 and 2007–2016 showed an increase in the number of papers mentioning effects of climate change. Conclusions The four CSIs identified in this study could be targeted in a systematic surveillance programme in Northern regions. It is evident that climate change can affect the epidemiology and geographical range of many infectious diseases, but there were difficulties in identifying additional CSIs, most likely because other factors may be of equal or greater importance. However, climate-ecological dynamics are constantly under change, and therefore diseases may fall in or out of the climate-sensitive definition over time. There is increasing awareness in the literature of the effects of climate change on infectious diseases over time.

Author(s):  
Jerelle A. Jesse ◽  
M. Victoria Agnew ◽  
Kohma Arai ◽  
C. Taylor Armstrong ◽  
Shannon M. Hood ◽  
...  

AbstractDiseases are important drivers of population and ecosystem dynamics. This review synthesizes the effects of infectious diseases on the population dynamics of nine species of marine organisms in the Chesapeake Bay. Diseases generally caused increases in mortality and decreases in growth and reproduction. Effects of diseases on eastern oyster (Crassostrea virginica) appear to be low in the 2000s compared to effects in the 1980s–1990s. However, the effects of disease were not well monitored for most of the diseases in marine organisms of the Chesapeake Bay, and few studies considered effects on growth and reproduction. Climate change and other anthropogenic effects are expected to alter host-pathogen dynamics, with diseases of some species expected to worsen under predicted future conditions (e.g., increased temperature). Additional study of disease prevalence, drivers of disease, and effects on population dynamics could improve fisheries management and forecasting of climate change effects on marine organisms in the Chesapeake Bay.


2017 ◽  
pp. 1075-1093
Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.


2013 ◽  
Vol 6 ◽  
pp. 107-124 ◽  
Author(s):  
Man Bahadur Khattri

This paper focuses on cultural analysis and how people are coping with new situation created by climate change in production of millet. Changes relating to climate change are observed; perceived and understood on a local level. This is an important area of study for anthropologists and it is interest of climate scientists as well. This paper is based on anthropological analysis on climate change effects on finger millet production in Argal VDC of Baglung district, West of Nepal. Millet is a staple food of people of Argal and most of Hill people of Nepal. Millet is not only staple food and associated with nutrition of people. It's also associated with rituals during production and as well as during consumption. Increasing temperature, changing rainfall patterns, extreme weather events are linked with climate change which has direct effect on life of all people but also millet production and ritual activities. DOI: http://dx.doi.org/10.3126/dsaj.v6i0.8481 Dhaulagiri Journal of Sociology and Anthropology Vol. 6, 2012 107-124


Author(s):  
Mohd Danish Khan ◽  
Hong Ha Thi Vu ◽  
Quang Tuan Lai ◽  
Ji Whan Ahn

For decades, researchers have debated whether climate change has an adverse impact on diseases, especially infectious diseases. They have identified a strong relationship between climate variables and vector’s growth, mortality rate, reproduction, and spatiotemporal distribution. Epidemiological data further indicates the emergence and re-emergence of infectious diseases post every single extreme weather event. Based on studies conducted mostly between 1990-2018, three aspects that resemble the impact of climate change impact on diseases are: (a) emergence and re-emergence of vector-borne diseases, (b) impact of extreme weather events, and (c) social upliftment with education and adaptation. This review mainly examines and discusses the impact of climate change based on scientific evidences in published literature. Humans are highly vulnerable to diseases and other post-catastrophic effects of extreme events, as evidenced in literature. It is high time that human beings understand the adverse impacts of climate change and take proper and sustainable control measures. There is also the important requirement for allocation of effective technologies, maintenance of healthy lifestyles, and public education.


Author(s):  
FEUT Monday Richmond ◽  
Amarachi Chiagoziem

This study aimed at X-raying the role of accounting and climate change effects in the world. The study was purely empirical in nature and data and information were obtained from related literatures and articles. The study further purposed that the accounting profession can support organizational climate change impact disclosures. This study is an additional literature to the existing research and practice in environmental accounting disclosures and set the pace for future research and practice in this field of accounting. KEYWORDS: Accounting, Climate change, Infectious Diseases, Disclosures.


Author(s):  
Giovanni Lo Iacono ◽  
Gordon L. Nichols

The introduction of pasteurization, antibiotics, and vaccinations, as well as improved sanitation, hygiene, and education, were critical in reducing the burden of infectious diseases and associated mortality during the 19th and 20th centuries and were driven by an improved understanding of disease transmission. This advance has led to longer average lifespans and the expectation that, at least in the developed world, infectious diseases were a problem of the past. Unfortunately this is not the case; infectious diseases still have a significant impact on morbidity and mortality worldwide. Moreover, the world is witnessing the emergence of new pathogens, the reemergence of old ones, and the spread of antibiotic resistance. Furthermore, effective control of infectious diseases is challenged by many factors, including natural disasters, extreme weather, poverty, international trade and travel, mass and seasonal migration, rural–urban encroachment, human demographics and behavior, deforestation and replacement with farming, and climate change. The importance of environmental factors as drivers of disease has been hypothesized since ancient times; and until the late 19th century, miasma theory (i.e., the belief that diseases were caused by evil exhalations from unhealthy environments originating from decaying organic matter) was a dominant scientific paradigm. This thinking changed with the microbiology era, when scientists correctly identified microscopic living organisms as the pathogenic agents and developed evidence for transmission routes. Still, many complex patterns of diseases cannot be explained by the microbiological argument alone, and it is becoming increasingly clear that an understanding of the ecology of the pathogen, host, and potential vectors is required. There is increasing evidence that the environment, including climate, can affect pathogen abundance, survival, and virulence, as well as host susceptibility to infection. Measuring and predicting the impact of the environment on infectious diseases, however, can be extremely challenging. Mathematical modeling is a powerful tool to elucidate the mechanisms linking environmental factors and infectious diseases, and to disentangle their individual effects. A common mathematical approach used in epidemiology consists in partitioning the population of interest into relevant epidemiological compartments, typically individuals unexposed to the disease (susceptible), infected individuals, and individuals who have cleared the infection and become immune (recovered). The typical task is to model the transitions from one compartment to another and to estimate how these populations change in time. There are different ways to incorporate the impact of the environment into this class of models. Two interesting examples are water-borne diseases and vector-borne diseases. For water-borne diseases, the environment can be represented by an additional compartment describing the dynamics of the pathogen population in the environment—for example, by modeling the concentration of bacteria in a water reservoir (with potential dependence on temperature, pH, etc.). For vector-borne diseases, the impact of the environment can be incorporated by using explicit relationships between temperature and key vector parameters (such as mortality, developmental rates, biting rate, as well as the time required for the development of the pathogen in the vector). Despite the tremendous advancements, understanding and mapping the impact of the environment on infectious diseases is still a work in progress. Some fundamental aspects, for instance, the impact of biodiversity on disease prevalence, are still a matter of (occasionally fierce) debate. There are other important challenges ahead for the research exploring the potential connections between infectious diseases and the environment. Examples of these challenges are studying the evolution of pathogens in response to climate and other environmental changes; disentangling multiple transmission pathways and the associated temporal lags; developing quantitative frameworks to study the potential effect on infectious diseases due to anthropogenic climate change; and investigating the effect of seasonality. Ultimately, there is an increasing need to develop models for a truly “One Health” approach, that is, an integrated, holistic approach to understand intersections between disease dynamics, environmental drivers, economic systems, and veterinary, ecological, and public health responses.


2015 ◽  
Vol 55 (2) ◽  
pp. 456
Author(s):  
Paul van der Beeke

Oil and gas production operations occur in widely diverse onshore and offshore contexts. The global industry has a long history of coping with climate variability, extreme climatic conditions and extreme weather events. Climate change, however, is projected to take the new climate beyond the range of historical variability in many places where oil and gas production facilities are located. Oil and gas infrastructure often has an expected operational life of 50 years or more, which would take new operations to 2064 and beyond. This is well inside the timeframe predicted for substantial climate change with consequent risks to longer term operational continuity and supply chain security. In recent years, the realities of climate change beyond pre-industrial age historical variability, and the associated business risks, have become accepted by the major global oil and gas industry players. Other stakeholders, including corporate, institutional and private investors and corporate regulators, are also becoming more assertive in their demands for corporate disclosure of climate change risks, adaptation management plans and evidence of effective implementation of adaptive measures. Industry decision-makers need scientifically sound and robust data applied to their specific operations and business conditions to support business case-based investment decisions for new project feasibility, capital and operational expenditure, and the management of long-term strategic liabilities. This extended abstract provides an overview of the complex and interconnected web of climate change effects that should be considered. It also outlines approaches that could be employed to manage the risks and meet stakeholder expectations.


Sign in / Sign up

Export Citation Format

Share Document