scholarly journals Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yinying Dong ◽  
Qiongdan Zheng ◽  
Zhiming Wang ◽  
Xiahui Lin ◽  
Yang You ◽  
...  

Abstract Background Increased liver stiffness exerts a detrimental role in driving hepatocellular carcinoma (HCC) malignancy and progression, and indicates a high risk of unfavorable outcomes. However, it remains largely unknown how liver matrix stiffness as an independent cue triggers epithelial-mesenchymal transition (EMT) and facilitates HCC metastasis. Methods Buffalo rat HCC models with different liver stiffness backgrounds and an in vitro Col I-coated cell culture system with tunable stiffness were used in the study to explore the effects of matrix stiffness on EMT occurrence and its underlying molecular mechanism. Clinical significance of liver stiffness and key molecules required for stiffness-induced EMT were validated in HCC cohorts with different liver stiffness. Results HCC xenografts grown in higher stiffness liver exhibited worse malignant phenotypes and higher lung metastasis rate, suggesting that higher liver stiffness promotes HCC invasion and metastasis. Cell tests in vitro showed that higher matrix stiffness was able to strikingly strengthen malignant phenotypes and independently induce EMT occurrence in HCC cells, and three signaling pathways converging on Snail expression participated in stiffness-mediated effect on EMT including integrin-mediated S100A11 membrane translocation, eIF4E phosphorylation, and TGF β1 autocrine. Additionally, the key molecules required for stiffness-induced EMT were highly expressed in tumor tissues of HCC patients with higher liver stiffness and correlated with poor tumor differentiation and higher recurrence. Conclusions Higher matrix stiffness as an initiator triggers epithelial-mesenchymal transition (EMT) in HCC cells independently, and three signaling pathways converging on Snail expression contribute to this pathological process. This work highlights a significant role of biomechanical signal in triggering EMT and facilitating HCC invasion and metastasis.

2020 ◽  
Vol 124 (1) ◽  
pp. 270-280
Author(s):  
Junhui Yu ◽  
Shan Li ◽  
Zhengshui Xu ◽  
Jing Guo ◽  
Xiaopeng Li ◽  
...  

Abstract Background Emerging evidence suggests the involvement of caudal-related homoeobox transcription factor 2 (CDX2) in tumorigenesis of various cancers. Although CDX2 functions in cancer invasion and metastasis, fewer studies focus on the role of CDX2 during the induction of epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC). Methods Immunohistochemical analysis of CDX2 was performed. A series of in vitro and in vivo experiments were conducted to reveal the role of CDX2 in the invasion and metastasis of CRC. Results CDX2 was downregulated in CRC tissues and reduced CDX2 correlated with poor prognosis. Knockdown of CDX2 promoted colon cancer cell invasion in vitro and facilitated liver metastasis in vivo with inducing EMT phenotypes. Further investigation indicated that CDX2 retarded Akt and GSK-3β phosphorylation, and thereby diminished Snail expression, β-catenin stabilisation and nuclear translocation. The depletion of β-catenin neutralised the regulation of Slug and ZEB1 by CDX2 knockdown. Mechanistically, CDX2 antagonised PI3K/Akt activity in CRC by modulating PTEN expression. CDX2 directly bound to the promoter of PTEN and transactivated its expression. Conclusions Our study first uncovered that CDX2 inhibits EMT and metastasis of CRC by regulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2020 ◽  
Vol 117 (9) ◽  
pp. 4770-4780 ◽  
Author(s):  
Hao Jiang ◽  
Hui-Jun Cao ◽  
Ning Ma ◽  
Wen-Dai Bao ◽  
Jing-Jing Wang ◽  
...  

Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial–mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Rahul Sreekumar ◽  
Muhammad Emaduddin ◽  
Hajir Al-Saihati ◽  
Karwan Moutasim ◽  
James Chan ◽  
...  

Abstract Epithelial–mesenchymal transition (EMT) is a process by which tumour cells lose epithelial characteristics, become mesenchymal and highly motile. EMT pathways also induce stem cell features and resistance to apoptosis. Identifying and targeting this pool of tumour cells is a major challenge. Protein kinase C (PKC) inhibition has been shown to eliminate breast cancer stem cells but has never been assessed in hepatocellular cancer (HCC). We investigated ZEB family of EMT inducer expression as a biomarker for metastatic HCC and evaluated the efficacy of PKC inhibitors for HCC treatment. We showed that ZEB1 positivity predicted patient survival in multiple cohorts and also validated as an independent biomarker of HCC metastasis. ZEB1-expressing HCC cell lines became resistant to conventional chemotherapeutic agents and were enriched in CD44high/CD24low cell population. ZEB1- or TGFβ-induced EMT increased PKCα abundance. Probing public databases ascertained a positive association of ZEB1 and PKCα expression in human HCC tumours. Inhibition of PKCα activity by small molecule inhibitors or by PKCA knockdown reduced viability of mesenchymal HCC cells in vitro and in vivo. Our results suggest that ZEB1 expression predicts survival and metastatic potential of HCC. Chemoresistant/mesenchymal HCC cells become addicted to PKC pathway and display sensitivity to PKC inhibitors such as UCN-01. Stratifying patients according to ZEB1 and combining UCN-01 with conventional chemotherapy may be an advantageous chemotherapeutic strategy.


ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Suttichai Krisanaprakornkit ◽  
Anak Iamaroon

Oral cancer is one of the drastic human cancers due to its aggressiveness and high mortality rate. Of all oral cancers, squamous cell carcinoma is the most common accounting for more than 90%. Epithelial-mesenchymal transition (EMT) is suggested to play an important role during cancer invasion and metastasis. Recently, emerging knowledge on EMT in carcinogenesis is explosive, tempting us to analyze previous studies on EMT in oral squamous cell carcinoma (OSCC). In this paper, we have first addressed the general molecular mechanisms of EMT, evidenced by alterations of cell morphology during EMT, the presence of cadherin switching, turning on and turning off of many specific genes, the activation of various signaling pathways, and so on. The remaining part of this paper will focus on recent findings of the investigations of EMT on OSCC. These include the evidence of EMT taking place in OSCC and the signaling pathways employed by OSCC cells during their invasion and metastasis. Collectively, with the large body of new knowledge on EMT in OSCC elaborated here, we are hopeful that targeting treatment for OSCC will be developed.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Wenbiao Chen ◽  
Donge Tang ◽  
Dongxin Tang ◽  
Yong Dai

Abstract Inactivation of tumor suppressor gene played critical roles in the development and progression of human hepatocellular carcinoma (HCC). Zic family member 4 (ZIC4) is transcription factor and plays an important role in the developmental process. However, the expression and biological role of ZIC4 in HCC is poorly understood. Here, bioinformatics analysis based on The Cancer Genome Atlas (TCGA) database revealed an aberrant hypermethylation of ZIC4 in HCC. ZIC4 is frequently hypermethylated in promoter region and down expressed in HCC cells and tissues. Functionally, ZIC4 inhibition facilitated the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Conversely, ZIC4 overexpression reduced proliferation and invasiveness of HCC cells. In addition, ZIC4 inhibition rescued the antitumor effect induced by enhancer of zeste homolog 2 (EZH2) knockdown or EZH2 inhibitor. Mechanistically, EZH2 knockdown or EZH2 inhibitor reduced the enrichment of EZH2 and H3K27me3 in ZIC4 promoter region and leading to the upregulation of ZIC4. Altogether, these data indicate that epigenetic silencing of ZIC4 by EZH2 mediated H3K27me3 is an important mechanism in HCC and provide a new therapeutic target for the treatment of hepatocellular carcinoma disease.


Author(s):  
Mo Jie ◽  
Zhao-Qi Zhang ◽  
Ning Deng ◽  
Qiu-Meng Liu ◽  
Chao Wang ◽  
...  

18[Formula: see text]-glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicinal herb Glycyrrhizae radix et rhizoma. We previously demonstrated that GA inhibited tumor growth in hepatocellular carcinoma (HCC). However, the effect of GA on transforming growth factor-[Formula: see text] (TGF-[Formula: see text]-induced epithelial-mesenchymal transition (EMT) and metastasis were still unclear. In this study, in vitro transwell assays and immunofluorescence (IF) demonstrated that GA inhibited TGF-[Formula: see text]-induced migration, invasion and EMT of HCC cells. However, it had little effect on the inhibition of proliferation by TGF-[Formula: see text]. Moreover, we confirmed that GA suppressed the metastasis of HCC cells in vivousing an ectopic lung metastasis model. Furthermore, we found that GA inhibited TGF-[Formula: see text]-induced EMT mainly by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which played an essential role in TGF-[Formula: see text]-induced EMT and cell mobility. Mechanistically, GA inhibited the phosphorylation of STAT3 by increasing the expression of Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2). Therefore, we concluded that GA inhibited TGF-[Formula: see text]-induced EMT and metastasis via the SHP1&SHP2/STAT3/Snail pathway. Our data provide an attractive therapeutic target for future multimodal management of HCC.


Author(s):  
Honglei Cui ◽  
Danfeng Guo ◽  
Xiaodan Zhang ◽  
Yaohua Zhu ◽  
Zhihui Wang ◽  
...  

β-enolase (ENO3) is a metalloenzyme that functions during glycolysis and has been revealed ectopic expression in different cancers. However, the function and underlying modulatory mechanisms of ENO3 in hepatocellular carcinoma (HCC) are still elusive. Here, we discovered that ENO3 was remarkably down-regulated in human HCC tissue in contrast to those in noncancerous tissue. Moreover, low expression of ENO3 was related to the poor prognosis of HCC patients. Overexpression of ENO3 suppressed proliferative, migratory, and invasive abilities of HCC cells both in vitro and in vivo, whereas knocking down ENO3 led to the opposite effect. In addition, we revealed that ENO3 repressed the epithelial-mesenchymal transition (EMT) process with its biomarker variations. Mechanistic research unveiled that ENO3 suppressed the Wnt/β-catenin signal, which subsequently modulated the transcription of its target genes associated with the proliferation and metastasis capacity of HCC cells. Taken together, our study uncovered that ENO3 acted as a tumor inhibitor in HCC development and implied ENO3 as a promising candidate for HCC treatment.


2019 ◽  
Vol 41 (5) ◽  
pp. 571-581
Author(s):  
Tao Huang ◽  
Yi-Zhan Guo ◽  
Xiao Yue ◽  
Guo-Pei Zhang ◽  
Yi Zhang ◽  
...  

Abstract Cripto-1 (CR1), an oncofetal protein, had been implied to reactivate in some cancers. However, the relationship between CR1 expression and patient outcomes and the tumor biological function of CR1 contributing to invasion and metastasis in hepatocellular carcinoma (HCC) is poorly defined. In this study, we demonstrated that CR1 was expressed in over 80% of HCCs in a training cohort (n = 242) and a validation cohort (n = 159). High CR1 expression was significantly correlated with aggressive HCC phenotypes (i.e. portal vein tumor thrombus, microscopic vascular invasion, multiple tumors and poor tumor differentiation). In both the training and validation cohorts, patients with high CR1 expression had remarkably shorter disease-free survival and overall survival rates than those with low CR1 expression. A series in vitro and in vivo assays showed that CR1 substantially promoted HCC cell migration, invasion and metastasis. Mechanistically, we demonstrated that CR1 induced HCC cells to undergo epithelial–mesenchymal transition through activating the Akt/NFκB/p65 signaling. Chromatin immunoprecipitation assay showed that NFκB/p65 enhanced CR1 expression by binding its promoter. Thus, CR1 and NFκB/p65 form a positive feedback loop that sustained the process of migration and invasion of HCC. Therefore, CR1 plays an important role in HCC invasion and metastasis and may be an effective and reliable prognostic biomarker for HCC recurrence after resection. Targeting CR1 may be a promising treatment for HCC.


Sign in / Sign up

Export Citation Format

Share Document