scholarly journals HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Gao Tan ◽  
Chongyang Huang ◽  
Jiaye Chen ◽  
Fachao Zhi

Abstract Background Pyroptosis is a form of proinflammatory gasdermin-mediated programmed cell death. Abnormal mucosal inflammation in the intestine is a critical risk factor for colitis-associated colorectal cancer (CAC). However, it is unknown whether pyroptosis participates in the development of CAC. Methods To investigate the role of gasdermin E (GSDME)-mediated pyroptosis in the development of CAC, Gsdme−/− mice and their wild-type (WT) littermate controls were challenged with azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce a CAC model. Neutralizing antibodies against high-mobility group box protein 1 (HMGB1) were used to determine the role of HMGB1 in CAC. To identify the role of ERK1/2 in HMGB1-induced colon cancer cell proliferation, we performed western blotting and CCK8 assays using the ERK1/2-specific inhibitor U0126 in CT26 colon cancer cells. Results In the CAC model, Gsdme−/− mice exhibited reduced weight loss and colon shortening, attenuated rectal prolapse, and reduced tumor numbers and sizes compared to WT littermates. Furthermore, treatment with neutralizing anti-HMGB1 antibodies decreased the numbers and sizes of tumors, ERK1/2 activation and proliferating cell nuclear antigen (PCNA) expression in AOM/DSS-challenged WT mice. In addition, our in vitro experiments demonstrated that HMGB1 induced proliferation and PCNA expression in CT26 colon cancer cells through the ERK1/2 pathway. Conclusion GSDME-mediated pyroptosis promotes the development of CAC by releasing HMGB1, which induces tumor cell proliferation and PCNA expression through the ERK1/2 pathway. This finding reveals a previously unrecognized link between pyroptosis and CAC tumorigenesis and offers new insight into CAC pathogenesis.

Oncogene ◽  
2015 ◽  
Vol 35 (24) ◽  
pp. 3151-3162 ◽  
Author(s):  
Q Zhang ◽  
T Wei ◽  
K Shim ◽  
K Wright ◽  
K Xu ◽  
...  

Abstract Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241–5253). We investigated the mechanisms by which SPRY regulates epithelial–mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3′ untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1 −/− and Spry2 −/− double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.


2022 ◽  
Author(s):  
Qingyan Li ◽  
Huixia Zhao ◽  
Weiwei Dong ◽  
Na Guan ◽  
Yanyan Hu ◽  
...  

Abstract Colorectal cancer (CRC) is the most commonly diagnosed form of cancer worldwide. Though significant advances in prevention and diagnosis, CRC is still one of the leading causes of cancer-related mortality globally. RAB27A, the member of RAB27 family of small GTPases, is the critical protein for intracellular secretion and was reported to promote tumor progression. However, it is controversial for the role of RAB27A in CRC progression, so we explored the exact function of RAB27A in CRC development in this study. Based on the stable colon cancer cell lines of RAB27A knockdown and ectopic expression, we found that RAB27A knockdown inhibited SW480 colon cancer cell proliferation and clone formation, whereas ectopic expression of RAB27A in RKO colon cancer cells facilitated cell proliferation and clone formation, indicating that RAB27A is critical for colon cancer cell growth. In addition, our data demonstrated that the migration and invasion of colon cancer cells were suppressed by RAB27A knockdown, but promoted by RAB27A ectopic expression. Therefore, RAB27A was identified as an onco-protein in mediating CRC development, which may be a valuable prognostic indicator and potential therapeutic target for CRC.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Li-hao Zhao ◽  
Quan Li ◽  
Zhi-Jun Huang ◽  
Mi-Xue Sun ◽  
Jing-jing Lu ◽  
...  

AbstractColorectal cancer (CRC) is the second common cause of cancer-related human mortalities. Dysregulation of histone 3 (H3) methylation could lead to transcriptional activation of multiple oncogenes, which is closely associated with CRC tumorigenesis and progression. Nuclear receptor-binding SET Domain protein 2 (NSD2) is a key histone methyltransferase catalyzing histone H3 lysine 36 dimethylation (H3K36me2). Its expression, the potential functions, and molecular mechanisms in CRC are studied here. Gene Expression Profiling Interactive Analysis (GEPIA) bioinformatics results showed that the NSD2 mRNA expression is elevated in both colon cancers and rectal cancers. Furthermore, NSD2 mRNA and protein expression levels in local colon cancer tissues are significantly higher than those in matched surrounding normal tissues. In primary human colon cancer cells and established CRC cell lines, shRNA-induced silencing or CRISPR/Cas9-induced knockout of NSD2 inhibited cell viability, proliferation, cell cycle progression, migration, and invasion. Furthermore, NSD2 shRNA or knockout induced mitochondrial depolarization, DNA damage, and apoptosis in the primary and established CRC cells. Contrarily, ectopic NSD2 overexpression in primary colon cancer cells further enhanced cell proliferation, migration, and invasion. H3K36me2, expressions of multiple oncogenes (ADAM9, EGFR, Sox2, Bcl-2, SYK, and MET) and Akt activation were significantly decreased after NSD2 silencing or knockout in primary colon cancer cells. Their levels were however increased after ectopic NSD2 overexpression. A catalytic inactive NSD2 (Y1179A) also inhibited H3K36me2, multiple oncogenes expression, and Akt activation, as well as cell proliferation and migration in primary colon cancer cells. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD2 shRNA largely inhibited primary colon cancer cell xenograft growth in nude mice. Together, NSD2 exerted oncogenic functions in CRC and could be a promising therapeutic target.


2021 ◽  
Author(s):  
Antony W Burgess ◽  
Maree C Faux ◽  
Silvia Paola Corona ◽  
Janet Weinstock ◽  
Guillaume Lessene ◽  
...  

Colorectal cancer (CRC) is driven by a small set of oncogenic and tumor suppressor mutations. However, different combinations of mutations often lead to poor tumor responses to individual anti-cancer drugs. We have investigated the anti-proliferative and in vitro cytotoxic activity of pair-wise combinations of inhibitors which target specific signaling pathways. Colon cancer cells in non-adherent cultures were killed more effectively by combinations of pyrvinium pamoate (a Wnt pathway inhibitor) and ABT263 (a pro-apoptotic Bcl-2 family inhibitor) or Ly29004 (a PI3kinase inhibitor). However, in a mouse xenograft model, the formulation and toxicity of the ABT737/PP combination prevent the use of these drugs for treatment of tumors. Fortunately, oral analogues of PP (pyrvinium phosphate, PPh) and ABT737(ABT263) have equivalent activity and can be used for treatment of mice carrying SW620 colorectal cancer xenografts. The PPh/ABT263 induced SW620 tumor cell apoptosis and reduced the rate of SW620 tumor growth. Combinations of Wnt signaling inhibitors and specific inhibitor of pro-survival proteins should be considered for the treatment of precancerous colon adenomas and advanced colorectal cancers with APC mutations.


2021 ◽  
Vol 11 (6) ◽  
pp. 1059-1065
Author(s):  
Lixin Zhu ◽  
Qinx Wang ◽  
Chen Yang

The purpose of this study is to explore the effect and possible machine-processing of the long non-coding RNA (lncRNA) SRRM2-AS1 in the development and pathogenesis of colorectal cancer. LncRNA plays an important role in tumorigenesis and development. LncRNA can regulate gene transcription and translation, cell proliferation, differentiation and apoptosis by affecting gene expression pathways of various coding proteins. SRRM2-AS1 is a kind of lncRNA. Studies have confirmed that the expression of SRRM2-AS1 is increased in colon adenocarcinoma tissues of colon cancer patients and is closely related to the prognosis of patients. However, the influence and molecular mechanism of SRRM2-AS1 on the malignant biological behavior of colon cancer cells are no yet clear. SRRM2-AS1 may interact with miR-370-3p. Studies have confirmed that overexpression of miR-370-3p can inhibit the proliferation and epithelial-mesenchymal transition of colon cancer cells in vitro. However, it is not yet clear whether SRRM2-AS1 can target miR-370-3p to affect the occurrence and development of tumors. In this study, RT-qPCR was employed to detect levels of SRRM2-AS1 and miRNA-370-3p in carcinoma tissues and corresponding paracarcinoma tissues from 41 patients with colon cancer. SW1116 colon cancer cells were cultured in vitro and separated into 4 groups: (1) si-NC group, (2) si-SRRM2-AS1 group, (3) si-SRRM2-AS1+anti-miRNA-NC group, and (4) si-SRRM2-AS1+anti-miRNA-370-3p group. The CCK-8 assay and colony formation experiment was employed to gauge cell proliferation. The scratch test was used to detect cell migration while the transwell assay was used to detect cell invasion. Finally, Western blot analysis was employed to detect levels of Ki67, E-cadherin, and N-cadherin proteins in colorectal cancer cells. The dual-luciferase reporter gene experiment verified that SRRM2-AS1 regulates miRNA-370-3p. The study found that compared to paracarcinoma tissue, levels of SRRM2-AS1 in colon cancer tissues was increased (P < 0.05). Compared to the si-NC group, the SW1116 cell OD value, number of colonies formed, scratch healing rate, number of invasive cells, and expression levels of Ki67 and N-cadherin protein in the si-SRRM2-AS1 group were all decreased (P < 0.05). However, E-cadherin protein levels were elevated (P < 0.05). SRRM2-AS1 negatively regulates levels of miRNA-370-3p in SW1116 cells. Compared to the si-SRRM2-AS1+anti-miRNA-NC group, SW1116 cell OD value, number of colonies formed, scratch healing rate, number of invasive cells, and Ki67 and N-cadherin protein levels were increased (P < 0.05) in the si-SRRM2-AS1+anti-miRNA-370-3p group. Conversely, E-cadherin protein levels were decreased (P < 0.05). These findings indicate that SRRM2-AS1 is predominately expressed in cancerous colon tissues. Attenuating expression of SRRM2-AS1 may curb the hyperplasia of colon carcinoma cell line SW1116 and promote cell apoptosis by regulating miRNA-370-3p expression.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1261
Author(s):  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Elyani Mohamad ◽  
Swee Keong Yeap ◽  
...  

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012–2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


2021 ◽  
Vol 22 (15) ◽  
pp. 8117
Author(s):  
Nunzia D’Onofrio ◽  
Elisa Martino ◽  
Luigi Mele ◽  
Antonino Colloca ◽  
Martina Maione ◽  
...  

Understanding the mechanisms of colorectal cancer progression is crucial in the setting of strategies for its prevention. δ-Valerobetaine (δVB) is an emerging dietary metabolite showing cytotoxic activity in colon cancer cells via autophagy and apoptosis. Here, we aimed to deepen current knowledge on the mechanism of δVB-induced colon cancer cell death by investigating the apoptotic cascade in colorectal adenocarcinoma SW480 and SW620 cells and evaluating the molecular players of mitochondrial dysfunction. Results indicated that δVB reduced cell viability in a time-dependent manner, reaching IC50 after 72 h of incubation with δVB 1.5 mM, and caused a G2/M cell cycle arrest with upregulation of cyclin A and cyclin B protein levels. The increased apoptotic cell rate occurred via caspase-3 activation with a concomitant loss in mitochondrial membrane potential and SIRT3 downregulation. Functional studies indicated that δVB activated mitochondrial apoptosis through PINK1/Parkin pathways, as upregulation of PINK1, Parkin, and LC3B protein levels was observed (p < 0.0001). Together, these findings support a critical role of PINK1/Parkin-mediated mitophagy in mitochondrial dysfunction and apoptosis induced by δVB in SW480 and SW620 colon cancer cells.


Author(s):  
Pedro Carriere ◽  
Natalia Calvo ◽  
María Belén Novoa ◽  
Fernanda Lopez-Moncada ◽  
Alexander Riquelme ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongxiao Jiang ◽  
Shufei Ding ◽  
Zhujun Mao ◽  
Liyan You ◽  
Yeping Ruan

Abstract Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.


Sign in / Sign up

Export Citation Format

Share Document