scholarly journals LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway

Author(s):  
Kun Qiao ◽  
Shipeng Ning ◽  
Lin Wan ◽  
Hao Wu ◽  
Qin Wang ◽  
...  

Abstract Background An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play essential roles in tumor initiation and progression. LncRNAs act as tumor promoters or suppressors by targeting specific genes via epigenetic modifications and competing endogenous RNA (ceRNA) mechanisms. In this study, we explored the function and detailed mechanisms of long intergenic nonprotein coding RNA 673 (LINC00673) in breast cancer progression. Methods Quantitative real-time PCR (qRT-PCR) was used to examine the expression of LINC00673 in breast cancer tissues and in adjacent normal tissues. Gain-of-function and loss-of function experiments were conducted to investigate the biological functions of LINC00673 in vitro and in vivo. We also explored the potential role of LINC00673 as a therapeutic target using antisense oligonucleotide (ASO) in vivo. RNA sequencing (RNA-seq), dual-luciferase reporter assays, chromatin immunoprecipitation (ChIP) assay, and rescue experiments were performed to uncover the detailed mechanism of LINC00673 in promoting breast cancer progression. Results In the present study, LINC00673 displayed a trend of remarkably increased expression in breast cancer tissues and was associated with poor prognosis in breast cancer patients. Importantly, LINC00673 depletion inhibited breast cancer cell proliferation by inhibiting the cell cycle and increasing apoptosis. Furthermore, ASO therapy targeting LINC00673 substantially suppressed breast cancer cell proliferation in vivo. Mechanistically, LINC00673 was found to act as a ceRNA by sponging miR-515-5p to regulate MARK4 expression, thus inhibiting the Hippo signaling pathway. Finally, ChIP assay showed that the transcription factor Yin Yang 1 (YY1) could bind to the LINC00673 promoter and increase its transcription in cis. Conclusions YY1-activated LINC00673 may exert an oncogenic function by acting as a sponge for miR-515-5p to upregulate the MARK4 and then inhibit Hippo signaling pathway, and may serve as a potential therapeutic target.

2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


2020 ◽  
Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Qifeng Luo ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
...  

Abstract Background : Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functions of hsa_circ_0005273 in breast cancer remains unknown. Here we aim to explore the role of hsa_circ_0005273 in BC. Methods : We chose miR-200a-3p as the potential target of hsa_circ_0005273. The expression levels of hsa_circ_0005273 and miR-200a-3p were examined in BC tissues compared with adjacent normal tissues by qRT-PCR. To characterize the function of hsa_circ_0005273, experiments of cell proliferation and migration were performed in BC cell lines infected with lentivirus targeting hsa_circ_0005273. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. Luciferase reporter assay was conducted to confirm the relationship between hsa_circ_0005273 and miR-200a-3p as well as miR-200a-3p andYAP1. Results : Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of has_circ_0005273 or upregulation of miR-200a-3p inhibited the proliferation and migration of BC cells in vitro and vivo. Mechanistically, hsa_circ_0005273 upregulated YAP1 by targeting miR-200a-3p and activated Hippo signaling pathway to promote BC progression. Conclusions : Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and activates Hippo signaling pathway to promote BC progression, and it may serve as a potential biomarker and therapeutic target. Keywords : breast cancer, hsa_circ_0005273, miR-200a-3p,YAP1, progression


2021 ◽  
Author(s):  
Di-Di Zhang ◽  
Xiao-Lin Sun ◽  
Zhao-Yuan Liang ◽  
Li-Na Zhang

Abstract Background: Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Many studies have shown that FAM96A and FAM96B play many different functions mainly through interacting with other different proteins. Recently, several studies show that FAM96A and FAM96B are significantly down-regulated compared in human gastrointestinal stromal tumors, colon cancer, liver cancer and gastric cancer with corresponding normal tissues. However, the molecular regulatory mechanisms of FAM96A and FAM96B in breast cancer development and metastasis are still unclear. In this work, we aimed to explore the molecular mechanisms of FAM96A and FAM96B in breast cancer progression.Methods: We used specific siRNAs to down-regulate FAM96A and FAM96B expression, and used recombinant plasmids to up-regulate FAM96A and FAM96B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry analysis. Wound healing and transwell assays were used to examine cell migration and invasion abilities. The relationships among FAM96A/B, EMT and Wnt/β-catenin signaling pathway were determined by analyzing the expression changes of classical markers and biological functional changes after XAV-939 inhibitor treatment. Results: We found that FAM96A and FAM96B expression in breast cancer was down-regulated. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and led to cell cycle arrested in G0/G1 phase. Conversely, FAM96A/B knockdown exhibited the opposite effects on breast cancer cells. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/β-catenin signaling pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/β-catenin signaling pathway in breast cancer cells. Furthermore, a Wnt pathway inhibitor, XAV-939 treatment reversed the promoting effects of FAM96A and FAM96B knockdown on breast cancer cell proliferation, invasion and migration.Conclusions: Our findings revealed that FAM96A and FAM96B may act as tumor suppressor genes and inhibit breast cancer progression via modulating the Wnt/β-catenin pathway, which can provide the potential markers for the diagnosis and treatment of breast cancer.


2018 ◽  
Vol 399 (11) ◽  
pp. 1305-1311 ◽  
Author(s):  
Guo-Qing Song ◽  
Yi Zhao

Abstract Down-regulation of the meningioma-associated protein (MAC30) gene has been found in many solid cancers. This study was carried out to determine the roles and the mechanisms of MAC30 in breast cancer. We used our own data and a public database to analyze the MAC30 mRNA and protein levels in breast cancer tissues. In addition, we established MAC30 knockdown breast cancer cells using MAC30 siRNA. The roles of MAC30 were detected by using the Soft agar assay, Annexin-V-FITC/PI double staining and the Transwell assay. Western blotting was used to analyze the potential mechanism(s) of MAC30 in these cells. We found that MAC30 mRNA and protein were higher in the cancer tissues compared to the matched normal tissues. MAC30 expression was associated with tumor size, tumor differentiation and estrogen receptor (ER) status. Overall survival rate of the patients with low MAC30 expression was obviously higher than the ones with high expression. The apoptotic ratio was lower in MDA-MB-231 and MDA-MB-157 cells with MAC30 expression. By Western blot analysis, we found that increased levels of phosphorylated YAP1, MST1 and LATS1 after MAC30 siRNA transfection in these two cells. In summary, we demonstrate that MAC30 knockdown is involved in the activation of the Hippo signaling pathway.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 22 (2) ◽  
pp. 931
Author(s):  
Jihyun Lee ◽  
Yujin Jung ◽  
Seo won Jeong ◽  
Ga Hee Jeong ◽  
Gue Tae Moon ◽  
...  

The Hippo signaling pathway plays a key role in regulating organ size and tissue homeostasis. Hippo and two of its main effectors, yes-associated protein (YAP) and WWTR1 (WW domain-containing transcription regulator 1, commonly listed as TAZ), play critical roles in angiogenesis. This study investigated the role of the Hippo signaling pathway in the pathogenesis of rosacea. We performed immunohistochemical analyses to compare the expression levels of YAP and TAZ between rosacea skin and normal skin in humans. Furthermore, we used a rosacea-like BALB/c mouse model induced by LL-37 injections to determine the roles of YAP and TAZ in rosacea in vivo. We found that the expression levels of YAP and TAZ were upregulated in patients with rosacea. In the rosacea-like mouse model, we observed that the clinical features of rosacea, including telangiectasia and erythema, improved after the injection of a YAP/TAZ inhibitor. Additionally, treatment with a YAP/TAZ inhibitor reduced the expression levels of YAP and TAZ and diminished vascular endothelial growth factor (VEGF) immunoreactivity in the rosacea-like mouse model. Our findings suggest that YAP/TAZ inhibitors can attenuate angiogenesis associated with the pathogenesis of rosacea and that both YAP and TAZ are potential therapeutic targets for patients with rosacea.


2021 ◽  
pp. 096032712198942
Author(s):  
Xiaoxue Zhang ◽  
Xianxin Xie ◽  
Kuiran Gao ◽  
Xiaoming Wu ◽  
Yanwei Chen ◽  
...  

As one of the leading causes of cancer-related deaths among women, breast cancer accounts for a 30% increase of incidence worldwide since 1970s. Recently, increasing studies have revealed that the long non-coding RNA ILF3-AS1 is involved in the progression of various cancers. Nevertheless, the role of ILF3-AS1 in breast cancer remains largely unknown. In the present study, we found that ILF3-AS1 was highly expressed in breast cancer tissues and cells. ILF3-AS1 silencing inhibited breast cancer cell proliferation, migration and invasion, and promoted cell apoptosis. ILF3-AS1 bound with miR-4429 in breast cancer cells. Moreover, RAB14 was a downstream target of miR-4429, and miR-4429 expression was negatively correlated with RAB14 or ILF3-AS1 expression in breast cancer tissues. The result of rescue experiments demonstrated that overexpression of RAB14 can reverse the inhibitory effect of ILF3-AS1 knockdown on breast cancer cell proliferation, migration and invasion. Overall, ILF3-AS1 promotes the malignant phenotypes of breast cancer cells by interacting with miR-4429 to regulate RAB14, which might offer a new insight into the underlying mechanism of breast cancer.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Zhongwei Li ◽  
Diandian Wang ◽  
Xintian Chen ◽  
Wenwen Wang ◽  
Pengfei Wang ◽  
...  

AbstractProtein arginine methyltransferase 1 (PRMT1) is able to promote breast cancer cell proliferation. However, the detailed mechanisms of PRMT1-mediated breast cancer cell proliferation are largely unknown. In this study, we reveal that PRMT1-mediated methylation of EZH2 at the R342 site (meR342-EZH2) has a great effect on PRMT1-induced cell proliferation. We also demonstrate that meR342-EZH2 can accelerate breast cancer cell proliferation in vitro and in vivo. Further, we show that meR342-EZH2 promotes cell cycle progression by repressing P16 and P21 transcription expression. In terms of mechanism, we illustrate that meR342-EZH2 facilitates EZH2 binding with SUZ12 and PRC2 assembly by preventing AMPKα1-mediated phosphorylation of pT311-EZH2, which results in suppression of P16 and P21 transcription by enhancing EZH2 expression and H3K27me3 enrichment at P16 and P21 promoters. Finally, we validate that the expression of PRMT1 and meR342-EZH2 is negatively correlated with pT311-EZH2 expression. Our findings suggest that meR342-EZH2 may become a novel therapeutic target for the treatment of breast cancer.


2020 ◽  
Vol 29 (2) ◽  
pp. 277-290
Author(s):  
Xuan Liu ◽  
Weirong Yao ◽  
Haiwei Xiong ◽  
Qiang Li ◽  
Yingliang Li

BACKGROUND: Breast cancer is the most common malignant tumor and usually occurs in women. Studies have shown that lncRNA nuclear enriched abundant transcript 1 (NEAT1) contributes to breast cancer progression. This study intends to further investigate the molecular mechanism of NEAT1 in breast cancer. METHODS: The expression levels of NEAT1, miR-410-3p and Cyclin D1 (CCND1) were detected by quantitative real-time PCR (qRT-PCR) in breast cancer tissues and cells. Kaplan-Meier analysis and the log-rank test were performed to determine the relationship between NEAT1 and overall survival. Cell Counting Kit-8 (CCK-8) assay analyzed cell proliferation. Transwell assay was performed to examine cell migration and invasion. The protein levels of CCND1 and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, N-cadherin and Vimentin) were measured by western blot. The target relationship was predicted by bioinformatics analysis, and confirmed by luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. Xenograft analysis was used to evaluate the tumor growth in vivo. RESULTS: NEAT1 and CCND1 were upregulated, while miR-410-3p was down-regulated in breast cancer tissues and cells. Higher NEAT1 expression level was associated with lower survival rate of breast cancer patients. Knockdown of miR-410-3p restored silenced NEAT1-mediated the inhibition of on proliferation, migration, invasion and EMT of breast cancer cells. In addition, NEAT1 regulated CCND1 expression by sponging miR-410-3p in breast cancer cells. NEAT1 knockdown blocked the tumor growth in vivo. CONCLUSION: NEAT1 induced breast cancer progression by regulating the miR-410-3p/CCND1 axis, indicating that NEAT1 may be a potential therapeutic target in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document