scholarly journals Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Matthew P. Su ◽  
Marcos Georgiades ◽  
Judit Bagi ◽  
Kyros Kyrou ◽  
Andrea Crisanti ◽  
...  

Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF− mutants (dsxF−/−), heterozygous dsxF− carriers (dsxF+/−) and G3 dsxF+ controls (dsxF+/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF−/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF−/− and dsxF+/− females compared to dsxF+/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF+/+ females than to those of dsxF+/− and dsxF−/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient.

2020 ◽  
Author(s):  
Matthew P Su ◽  
Marcos Georgiades ◽  
Judit Bagi ◽  
Kyros Kyrou ◽  
Andrea Crisanti ◽  
...  

AbstractBackgroundThe release of genetically modified mosquitoes which use gene-drive mechanisms to suppress reproduction in natural populations of Anopheles mosquitoes is one of the scientifically most promising methods for malaria transmission control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. Mutations which reduce an individual’s reproductive success are likely to create strong selective pressures to evolve resistance. It is thus crucial that the targeted population collapses as rapidly and as completely as possible to reduce the available time for the emergence of drive-resistant mutations. At a behavioural level, this means that the gene-drive carrying mutants should be at least as (and ideally more) sexually attractive than the wildtype population they compete against. A key element in the copulatory negotiations of Anopheles mosquitoes is their acoustic courtship. We therefore analysed sound emissions and acoustic preference in a doublesex mutant previously used to successfully collapse caged colonies of Anopheles gambiae s.l..MethodsThe flight tones produced by the beating of their wings form the signals for acoustic mating communication in Anopheles species. We assessed the acoustic impact of the disruption of a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of both males (XY) and females (XX) in homozygous dsxF- mutants (dsxF-/-), heterozygous dsxF- carriers (dsxF+/-) and G3 ‘wildtype’ dsxF+ controls (dsxF+/+). To exclude non-genetic influences, we controlled for temperature and measured wing lengths for all experimental animals. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes.ResultsA previous study demonstrated an altered phenotype only for females homozygous for the disrupted dsx allele (dsxF-/-), who appear intersex. No phenotypic changes were observed for heterozygous carriers or males, suggesting that the female-specific dsxF allele is haplosufficient. We here identify significant, dose-dependent increases in the flight tones of both dsxF-/- and dsxF+/- females when compared to dsxF+/+ control females. Flight tone frequencies in all three female genotypes remained significantly lower than in males, however. When tested experimentally, males showed stronger phonotactic responses to the flight tones of control dsxF+/+ females. While flight tones from dsxF+/- and dsxF-/- females also elicited positive phonotactic behaviour in males, this was significantly reduced compared to responses to control tones. We found no evidence of phonotactic behaviour in any female genotype tested. None of the male genotypes displayed any deviations from the control condition.ConclusionsA key prerequisite for copulation in anopheline mosquitoes is the phonotactic attraction of males towards female flight tones within large - spatially and acoustically crowded - mating swarms. Reductions in acoustic attractiveness of released mutant lines, as reported here for heterozygous dsxF+/- females, reduce the line’s mating efficiency, and could consequently reduce the efficacy of the associated population control effort. Assessments of caged populations may not successfully reproduce the challenges posed by natural mating scenarios. We propose to amend existing testing protocols in order to more faithfully reflect the competitive conditions between a mutant line and the wildtype population it is meant to interact with. This should also include novel tests of ‘acoustic fitness’. In line with previous studies, our findings confirm that disruption of the female-specific isoform dsxF has no effect on males; for some phenotypic traits, such as female flight tones, however, the effects of dsxF appear to be dose-dependent rather than haplosufficient.


2021 ◽  
Author(s):  
Domonbabele François de Sales Hien ◽  
Prisca S. L. Paré ◽  
Amanda Cooper ◽  
Benjamin K. Koama ◽  
Edwige Guissou ◽  
...  

Abstract Background: Besides feeding on blood, females of the malaria vector Anopheles gambiae s.l. readily feed on natural sources of plant sugars. The impact of toxic secondary phytochemicals contained in plant-derived sugars on mosquito physiology and on the development of Plasmodium parasites remains elusive. The focus of this study was to explore the influence of the alkaloid ricinine, found in the nectar of the castorbean Ricinus communis, on the mosquito ability to transmit Plasmodium falciparum. Methods: Females of Anopheles gambiae and its sibling species Anopheles coluzzii were exposed to ricinine through sugar feeding assays to assess the effect of this phytochemical on mosquito survival, the level of P. falciparum infection, and the growth rate of the parasite. Results: Ricinine induced a significant reduction in the longevity of both Anopheles species. Ricinine caused acceleration in the parasite growth rate with an earlier invasion of the salivary glands in both species. At a concentration of 0.04 g l-1 in An. coluzzii, ricinine had no effect on mosquito infection, while 0.08 g l-1 ricinine-5% glucose solution induced a 14% increase in An. gambiae infection rate. Conclusions: Overall, our findings reveal that consumption of certain nectar phytochemicals can have unsuspected and contrasting effects on key phenotypic traits that govern the intensity of malaria transmission. Further studies will be required before concluding on the putative role of ricinine as a novel control agent, including the development of ricinine-based toxic and transmission-blocking sugar baits. Testing other secondary phytochemicals in plant nectar will provide a broader understanding of the impact, which plants can have on the transmission of vector-borne diseases.


2011 ◽  
Vol 278 (1721) ◽  
pp. 3142-3151 ◽  
Author(s):  
Tanya L. Russell ◽  
Dickson W. Lwetoijera ◽  
Bart G. J. Knols ◽  
Willem Takken ◽  
Gerry F. Killeen ◽  
...  

Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% w AIC c support). The individual phenotypic expression of the maternal ( p = 0.0001) and current ( p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sofia Tapanelli ◽  
Maria Grazia Inghilterra ◽  
Julia Cai ◽  
James Philpott ◽  
Paolo Capriotti ◽  
...  

Genetically modified (GM) mosquitoes expressing anti-plasmodial effectors propagating through wild mosquito populations by means of gene drive is a promising tool to support current malaria control strategies. The process of generating GM mosquitoes involves genetic transformation of mosquitoes from a laboratory colony and, often, interbreeding with other GM lines to cross in auxiliary traits. These mosquito colonies and GM lines thus often have different genetic backgrounds and GM lines are invariably highly inbred, which in conjunction with their independent rearing in the laboratory may translate to differences in their susceptibility to malaria parasite infection and life history traits. Here, we show that laboratory Anopheles gambiae colonies and GM lines expressing Cas9 and Cre recombinase vary greatly in their susceptibility to Plasmodium falciparum NF54 infection. Therefore, the choice of mosquitoes to be used as a reference when conducting infection or life history trait assays requires careful consideration. To address these issues, we established an experimental pipeline involving genetic crosses and genotyping of mosquitoes reared in shared containers throughout their lifecycle. We used this protocol to examine whether GM lines expressing the antimicrobial peptide (AMP) Scorpine in the mosquito midgut interfere with parasite infection and mosquito survival. We demonstrate that Scorpine expression in the Peritrophin 1 (Aper1) genomic locus reduces both P. falciparum sporozoite prevalence and mosquito lifespan; both these phenotypes are likely to be associated with the disturbance of the midgut microbiota homeostasis. These data lead us to conclude that the Aper1-Sco GM line could be used in proof-of-concept experiments aimed at mosquito population replacement, although the impact of its reduced fitness on the spread of the transgene through wild populations requires further investigation.


2021 ◽  
Author(s):  
Sofia Tapanelli ◽  
Maria Grazia Inghilterra ◽  
Julia Cai ◽  
James Philpott ◽  
Paolo Capriotti ◽  
...  

Genetically modified (GM) mosquitoes expressing anti-plasmodial effectors propagating through wild mosquito populations by means of gene drive is a promising tool to support current malaria control strategies. The process of generating GM mosquitoes involves genetic transformation of mosquitoes from a laboratory colony and, often, interbreeding with other GM lines to cross in auxiliary traits. These mosquito colonies and GM lines thus often have different genetic backgrounds and GM lines are invariably highly inbred, which in conjunction with their independent rearing in the laboratory may translate to differences in their susceptibility to malaria parasite infection and life history traits. Here, we show that laboratory Anopheles gambiae colonies and GM lines expressing Cas9 and Cre recombinase vary greatly in their susceptibility to Plasmodium falciparum NF54 infection. Therefore, the choice of mosquitoes to be used as a reference when conducting infection or life history trait assays requires careful consideration. To address these issues, we established an experimental pipeline involving genetic crosses and genotyping of mosquitoes reared in shared containers throughout their lifecycle. We used this protocol to examine whether GM lines expressing the antimicrobial peptide (AMP) Scorpine in the mosquito midgut interfere with parasite infection and mosquito survival. We demonstrate that Scorpine expression in the Peritrophin 1 (Aper1) genomic locus reduces both P. falciparum sporozoite prevalence and mosquito lifespan; both these phenotypes are likely to be associated with the disturbance of the midgut microbiota homeostasis. These data lead us to conclude that the Aper1-Sco GM line could be used in proof-of-concept experiments aimed at mosquito population replacement, although the impact of its reduced fitness on the spread of the transgene through wild populations requires further investigation.


Author(s):  
Rowida Baeshen

Abstract Effective management of insect disease vectors requires a detailed understanding of their ecology and behavior. In Anopheles gambiae sensu lato (s.l.) (Diptera: Culicidae) mating occurs during swarming, but knowledge of their mating behavior under natural conditions is limited. Mosquitoes mate in flight over specific landmarks, known as swarm markers, at particular locations. Swarms consist of males; the females usually approach the swarm and depart following copulation. The number of mating pairs per swarm is closely associated with swarm size. The shape and height of swarm markers vary and may depend on the environmental conditions at the swarm’s location. Male–male interactions in mosquito swarms with similar levels of attractive flight activity can offer a mating advantage to some individuals. Flight tone is used by mosquitoes to recognize the other sex and choose a desirable mate. Clarifying these and other aspects of mosquito reproductive behavior can facilitate the development of population control measures that target swarming sites. This review describes what is currently known about swarming behavior in Anopheles gambiae s.l., including swarm characteristics; mating within and outside of swarms, insemination in females, and factors affecting and stimulating swarming.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Domonbabele F. D. S. Hien ◽  
Prisca S. L. Paré ◽  
Amanda Cooper ◽  
Benjamin K. Koama ◽  
Edwige Guissou ◽  
...  

Abstract Background Besides feeding on blood, females of the malaria vector Anopheles gambiae sensu lato readily feed on natural sources of plant sugars. The impact of toxic secondary phytochemicals contained in plant-derived sugars on mosquito physiology and the development of Plasmodium parasites remains elusive. The focus of this study was to explore the influence of the alkaloid ricinine, found in the nectar of the castor bean Ricinus communis, on the ability of mosquitoes to transmit Plasmodium falciparum. Methods Females of Anopheles gambiae and its sibling species Anopheles coluzzii were exposed to ricinine through sugar feeding assays to assess the effect of this phytochemical on mosquito survival, level of P. falciparum infection and growth rate of the parasite. Results Ricinine induced a significant reduction in the longevity of both Anopheles species. Ricinine caused acceleration in the parasite growth rate with an earlier invasion of the salivary glands in both species. At a concentration of 0.04 g l−1 in An. coluzzii, ricinine had no effect on mosquito infection, while 0.08 g l−1 ricinine-5% glucose solution induced a 14% increase in An. gambiae infection rate. Conclusions Overall, our findings reveal that consumption of certain nectar phytochemicals can have unexpected and contrasting effects on key phenotypic traits that govern the intensity of malaria transmission. Further studies will be required before concluding on the putative role of ricinine as a novel control agent, including the development of ricinine-based toxic and transmission-blocking sugar baits. Testing other secondary phytochemicals in plant nectar will provide a broader understanding of the impact which plants can have on the transmission of vector-borne diseases. Graphical abstract


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Grace Msangi ◽  
Moses I. Olotu ◽  
Aneth M. Mahande ◽  
Anitha Philbert ◽  
Eliningaya J. Kweka ◽  
...  

Background. Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. Method. The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. Results. The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P = 0.011 ). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05 ). Conclusion. It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.


Author(s):  
Runze Li ◽  
Rebecca C Deed

Abstract It is standard practice to ferment white wines at low temperatures (10-18 °C). However, low temperatures increase fermentation duration and risk of problem ferments, leading to significant costs. The lag duration at fermentation initiation is heavily impacted by temperature; therefore, identification of Saccharomyces cerevisiae genes influencing fermentation kinetics is of interest for winemaking. We selected 28 S. cerevisiae BY4743 single deletants, from a prior list of open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on chromosomes VII and XIII, influencing the duration of fermentative lag time. Five BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag duration compared to BY4743 in synthetic grape must (SGM) at 15 °C, over 72 h. Fermentation at 12.5 °C for 528 h confirmed the longer lag times of BY4743 Δcgi121, Δrps17a, and Δvma21. These three candidate ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5 °C in SGM and lag time measurements confirmed that the S288C allele of CGI121 on chromosome XIII, encoding a component of the EKC/KEOPS complex, increased fermentative lag phase duration. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide, suggesting that intron splicing, codon bias, or positional effects might be responsible for the impact on lag phase duration. This research demonstrates a new role of CGI121 and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1156
Author(s):  
Madelaine Sugasti-Salazar ◽  
Yessica Y. Llamas-González ◽  
Dalkiria Campos ◽  
José González-Santamaría

Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.


Sign in / Sign up

Export Citation Format

Share Document