scholarly journals Effects of microbial organic fertilizers on Astragalus membranaceus growth and rhizosphere microbial community

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Jian-Ping Liang ◽  
Zhi-Quan Xue ◽  
Zhen-Yu Yang ◽  
Zhi Chai ◽  
Jing-Ping Niu ◽  
...  

Abstract Purpose The application of excessive chemical fertilizers during the cultivation of Astragalus membranaceus leads to a decline in the quality of this medicinal plant as well as the soil’s sustainable productivity. In this study, we developed a special microbial organic fertilizer for A. membranaceus and investigated its effects on plant growth and rhizosphere microbial communities. Methods The root biomass and main active components of A. membranaceus in different growth stages were measured to assess the impacts of microbial organic manure on plant growth. Meanwhile, 16S rRNA and ITS1 amplicons were amplified and high-throughput sequencing was performed to detect the dynamic impacts of microbial organic manure on rhizosphere microbial communities. Result The results demonstrated that microbial organic manure significantly increased wet and dry weights of A. membranaceus seedlings and the accumulation of two effective components (flavonoids and saponin) in bacterial fertilizer treatment groups are significant higher than the control group. Research on rhizosphere microbial flora shows that the number and polymorphism of bacteria and fungi were decreased after the application of special fertilizer during the rapid growth period of plant and then gradually increased with seedling growth. The community structure of bacteria was regulated after the application of special fertilizer, and the beneficial bacteria for plant growth are enriched. Functional profiles prediction showed that significant shifts in metabolic functions impacting KEGG pathways of the microbial fertilizer treatment groups are related to metabolism and biosynthesis. Conclusion The results indicate that the microbial organic manure can improve A. membranaceus growth by providing appropriate nutrients and regulating the rhizosphere microbial community which has good potential in ecological cultivation of A. membranaceus.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaohui Wang ◽  
Chao Ji ◽  
Xin Song ◽  
Zhaoyang Liu ◽  
Yue Liu ◽  
...  

Biocontrol by inoculation with beneficial microbes is a proven strategy for reducing the negative effect of soil-borne pathogens. We evaluated the effects of microbial inoculants BIO-1 and BIO-2 in reducing soil-borne wheat diseases and in influencing wheat rhizosphere microbial community composition in a plot test. The experimental design consisted of three treatments: (1) Fusarium graminearum F0609 (CK), (2) F. graminearum + BIO-1 (T1), and (3) F. graminearum F0609 + BIO-2 (T2). The results of the wheat disease investigation showed that the relative efficacies of BIO-1 and BIO-2 were up to 82.5% and 83.9%, respectively. Illumina MiSeq sequencing revealed that bacterial abundance and diversity were significantly higher ( P < 0.05 ) in the treatment groups (T1 and T2) than in the control, with significantly decreased fungal diversity in the T2 group. Principal coordinates and hierarchical clustering analyses revealed that the bacterial and fungal communities were distinctly separated between the treatment and control groups. Bacterial community composition analysis demonstrated that beneficial microbes, such as Sphingomonas, Bacillus, Nocardioides, Rhizobium, Streptomyces, Pseudomonas, and Microbacterium, were more abundant in the treatment groups than in the control group. Fungal community composition analysis revealed that the relative abundance of the phytopathogenic fungi Fusarium and Gibberella decreased and that the well-known beneficial fungi Chaetomium, Penicillium, and Humicola were more abundant in the treatment groups than in the control group. Overall, these results confirm that beneficial microbes accumulate more easily in the wheat rhizosphere following application of BIO-1 and BIO-2 and that the relative abundance of phytopathogenic fungi decreased compared with that in the control group.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vanessa L. Brisson ◽  
Jennifer E. Schmidt ◽  
Trent R. Northen ◽  
John P. Vogel ◽  
Amélie C. M. Gaudin

Abstract Maize domestication and breeding have resulted in drastic and well documented changes in aboveground traits, but belowground effects on root system functioning and rhizosphere microbial communities remain poorly understood, despite their critical importance for nutrient and water acquisition. We investigated the rhizosphere microbial community composition and structure of ten Zea mays accessions along an evolutionary transect (two teosinte, three inbred maize lines, and five modern maize hybrids) grown in nutrient depleted soil from a low input agricultural system. Microbial community analysis revealed significant differences in community composition between soil compartments (proximal vs. distal rhizosphere) and between plant genetic groups (teosinte, inbred, and modern hybrid). Only a small portion of the microbial community was differentially selected across plant genetic groups: 3.7% of prokaryotic community members and 4.9% of fungal community members were significantly associated with a specific plant genetic group. Indicator species analysis showed the greatest differentiation between modern hybrids and the other two plant genetic groups. Co-occurrence network analysis revealed that microbial co-occurrence patterns of the inbred maize lines’ rhizosphere were significantly more similar to those of the teosintes than to the modern hybrids. Our results suggest that advances in hybrid development significantly impacted rhizosphere microbial communities and network assembly.


Biologia ◽  
2016 ◽  
Vol 71 (12) ◽  
Author(s):  
Qingxiang Yang ◽  
Ruifei Wang ◽  
Yuanyuan Xu ◽  
Chunxiao Kang ◽  
Ying Miao ◽  
...  

Abstract, an important medical plant in China, has distinct regional characteristics. It has long suffered from consecutive monoculture obstacles, resulting in severe reduction of quality and yield. The microbial community is believed to play an important role in the monoculture process. However, there are no reports on how microbial compositions change in response to growth of


2021 ◽  
Vol 8 ◽  
Author(s):  
Hongxia Zhang ◽  
Mingshan Song ◽  
Lili Wang ◽  
Anguo Zhang ◽  
Xiaolong Yang ◽  
...  

Seawater acidification and warming have been found to affect the early life of many marine organisms, but their effects on the microbial community in the environment related to the early development stage of aquaculture species have been rarely investigated. To understand how seawater acidification and warming impact the microbial community in aquaculture systems, we designed four microcosms to monitor and characterize the microbial composition on the corrugated plates in the Apostichopus japonicus culture tanks during its post-settlement stage. High-throughput 16S rRNA sequencing revealed that the bacterial community composition varied significantly in different periods of incubation. The bacterial diversity and community composition were obviously changed by seawater acidification and warming in the early period and then tended to revert to the level of the control group. Acidification significantly increased the relative abundance of dominant families Rhodobacteraceae and Flavobacteriaceae in the early period, suggesting that microbiota could increase the abundance of predominant taxa to adapt to increased CO2 concentration and reconstruct a stable community structure. No interaction effect of both factors was observed in the combined group. Results reveal that the microbial communities on the corrugated plates in A. japonicus culture tank were affected in the early period of incubation, and could then acclimatize to the increased CO2 and temperature. This study provides new insights into the variation and adaptation responses of the microbiota in aquaculture systems to seawater acidification and warming.


Author(s):  
Yanfen Zheng ◽  
Zongchang Xu ◽  
Haodong Liu ◽  
Yan Liu ◽  
Yanan Zhou ◽  
...  

Salinity is an important but little-studied abiotic stressor affecting plant growth. Although several previous reports have examined salt-tolerant plant microbial communities, we still lack a comprehensive understanding about the functional characteristics and genomic information of this population.


Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Shuaimin Chen ◽  
Tatoba R. Waghmode ◽  
Ruibo Sun ◽  
Eiko E. Kuramae ◽  
Chunsheng Hu ◽  
...  

Abstract Background Plant roots assemble microbial communities both inside the roots and in the rhizosphere, and these root-associated microbiomes play pivotal roles in plant nutrition and productivity. Although it is known that increased synthetic fertilizer input in Chinese farmlands over the past 50 years has resulted in not only increased yields but also environmental problems, we lack a comprehensive understanding of how crops under elevated nutrient input shape root-associated microbial communities, especially through adjusting the quantities and compositions of root metabolites and exudates. Methods The compositions of bacterial and fungal communities from the roots and rhizosphere of wheat (Triticum aestivum L.) under four levels of long-term inorganic nitrogen (N) fertilization were characterized at the tillering, jointing and ripening stages. The root-released organic carbon (ROC), organic acids in the root exudates and soil organic carbon (SOC) and soil active carbon (SAC) in the rhizosphere were quantified. Results ROC levels varied dramatically across wheat growth stages and correlated more with the bacterial community than with the fungal community. Rhizosphere SOC and SAC levels were elevated by long-term N fertilization but varied only slightly across growth stages. Variation in the microbial community structure across plant growth stages showed a decreasing trend with N fertilization level in the rhizosphere. In addition, more bacterial and fungal genera were significantly correlated in the jointing and ripening stages than in the tillering stage in the root samples. A number of bacterial genera that shifted in response to N fertilization, including Arthrobacter, Bacillus and Devosia, correlated significantly with acetic acid, oxalic acid, succinic acid and tartaric acid levels. Conclusions Our results indicate that both plant growth status and N input drive changes in the microbial community structure in the root zone of wheat. Plant growth stage demostrated a stronger influence on bacterial than on fungal community composition. A number of bacterial genera that have been described as plant growth-promoting rhizobacteria (PGPR) responded positively to N fertilization, and their abundance correlated significantly with the organic acid level, suggesting that the secretion of organic acids may be a strategy developed by plants to recruit beneficial microbes in the root zone to cope with high N input. These results provide novel insight into the associations among increased N input, altered carbon availability, and shifts in microbial communities in the plant roots and rhizosphere of intensive agricultural ecosystems.


Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jennifer E. Schmidt ◽  
Angela D. Kent ◽  
Vanessa L. Brisson ◽  
Amélie C. M. Gaudin

Abstract Background Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. We tested the impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence networks of maize roots collected from long-term conventionally and organically managed maize-tomato agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and microbial nitrogen-cycling processes. Results Host selection processes moderate the influence of agricultural management on rhizosphere microbial communities, although bacteria and fungi respond differently to plant selection and agricultural management. We found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere, distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic systems were more similar in diversity and network structure than communities from their respective bulk soils, and community composition was affected by both M and R effects. In contrast, fungal community composition was affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by management and was higher in the organic system. Conclusions Plant selection interacts with conventional and organic management practices to shape rhizosphere microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity and agroecosystem sustainability.


2003 ◽  
Vol 69 (12) ◽  
pp. 7310-7318 ◽  
Author(s):  
Kari E. Dunfield ◽  
James J. Germida

ABSTRACT The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified plants were temporary and did not persist into the next field season.


Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 123-126 ◽  
Author(s):  
Akifumi Sugiyama ◽  
Matthew G. Bakker ◽  
Dayakar V. Badri ◽  
Daniel K. Manter ◽  
Jorge M. Vivanco

Rhizosphere microbial communities are impacted by resident plant species and have reciprocal effects on their host plants. We collected resident soil from five wild populations of Arabidopsis in the United States and Europe in an effort to characterize the impacts of natural soil microbiomes on Arabidopsis growth performance. The microbial communities present in these soils showed differences in community structure as assessed by 454 sequencing and in metabolic activity. While pathogens associated with the Brassica family were rare, diverse genera of potential plant growth promoting rhizobacteria were detected. Seed corresponding to the five Arabidopsis genotypes was grown in resident and nonresident soils to determine relationships among plant growth performance and soil microbial community and edaphic characteristics. Arabidopsis genotypes demonstrated different patterns of relationship between biomass accumulation and microbial community characteristics. This work sheds light on the bacterial populations naturally associated with Arabidopsis and suggests implications of the rhizosphere microbiome for plant growth performance.


Sign in / Sign up

Export Citation Format

Share Document