scholarly journals Human amniotic mesenchymal stem cells-conditioned medium protects mice from high-fat diet-induced obesity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hui-Lan Tan ◽  
Xiao-Hui Guan ◽  
Min Hu ◽  
Jie Wu ◽  
Rong-Zhen Li ◽  
...  

Abstract Background Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. Methods The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid β oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. Results hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. Conclusion Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. Graphic Abstract The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jin-Ran Chen ◽  
Haijun Zhao ◽  
Oxana P Lazarenko ◽  
Kartik Shankar

Abstract Objectives Nutritional status during intrauterine and/or early postnatal life has substantial influences on adult offspring health. However, evidence on the impact of high fat diet (HFD)-induced maternal obesity on regulation of fetal bone development is sparse. Thus, we investigated the effects of maternal obesity in rodent and human cells on epigenetic regulation of osteoblast differentiation. Methods First, female Sprague-Dawley rats were fed either a low-fat AIN-93G control diet or a high fat diet (HFD) (45% fat calories) for 10 wk starting at 6 wk of age. Lean (from control diet) and obese (from HFD) female rats were then time-impregnated (n = 6 per group) by control diet fed male rats. At gestational day 18.5 (E18.5), all fetuses were taken and embryonic osteogenic calvarial cells (EOCCs) were isolated. Second, human osteo-progenitors of mesenchymal stem cells were isolated from umbilical cord following delivery from pregnant mothers. Results We found epigenetic regulation of polycomb-regulated gene Ezh2 (Enhancer of zeste homolog 2) in embryonic rats from HFD obese rat dams. Increased enrichment of repressive histone mark H3K27me3 on the gene body of SATB2 (ChIP Seq analysis) was associated with aberrant differentiation of EOCCs to mature osteoblasts. Knocking down Ezh2 in EOCCs and ST2 cells increased SATB2 expression; on the other hand, Ezh2 overexpression in EOCCs and ST2 cells decreased SATB2 expression. These data were consistent with ChIP experimental results showing strong association between H3K27me3, Ezh2 and SATB2. Second, human mesenchymal stem cells (MSCs) from umbilical cord (UC) were isolated following delivery from obese/overweight (pre-pregnancy BMI ≥ 25 kg/m2) and control (pre-pregnancy BMI between 19–25 kg/m2) pregnant mothers. We found: 1) UC-MSCs from pregnant obese/overweight mothers showed increased Ezh2 expression and decreased SATB2 mRNA expression, which was concurrent lower osteoblastogenesis potential in EOCCs; 2) ChIP experiments using H3K27me3 IP (immune-precipitation) showed significant association between H3K27me3, Ezh2 and SATB2. Conclusions These findings indicate maternal HFD-induced obesity-associated decrease of fetal pre-osteoblastic cell differentiation is under epigenetic control through SATB2 expression. Funding Sources Supported by USDA-ARS Project.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yujue Li ◽  
Lingyun Lu ◽  
Ying Xie ◽  
Xiang Chen ◽  
Li Tian ◽  
...  

Obesity, a chronic low-grade inflammatory state, not only promotes bone loss, but also accelerates cell senescence. However, little is known about the mechanisms that link obesity, bone loss, and cell senescence. Interleukin-6 (IL-6), a pivotal inflammatory mediator increased during obesity, is a candidate for promoting cell senescence and an important part of senescence-associated secretory phenotype (SASP). Here, wild type (WT) and (IL-6 KO) mice were fed with high-fat diet (HFD) for 12 weeks. The results showed IL-6 KO mice gain less weight on HFD than WT mice. HFD induced trabecular bone loss, enhanced expansion of bone marrow adipose tissue (BMAT), increased adipogenesis in bone marrow (BM), and reduced the bone formation in WT mice, but it failed to do so in IL-6 KO mice. Furthermore, IL-6 KO inhibited HFD-induced clone formation of bone marrow cells (BMCs), and expression of senescence markers (p53 and p21). IL-6 antibody inhibited the activation of STAT3 and the senescence of bone mesenchymal stem cells (BMSCs) from WT mice in vitro, while rescued IL-6 induced senescence of BMSCs from IL-6 KO mice through the STAT3/p53/p21 pathway. In summary, our data demonstrated that IL-6 KO may maintain the balance between osteogenesis and adipogenesis in BM, and restrain senescence of BMSCs in HFD-induced bone loss.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3410
Author(s):  
Seung-Cheol Lee ◽  
Yoo-Jung Lee ◽  
Inho Choi ◽  
Min Kim ◽  
Jung-Suk Sung

Adipocytes interact with adipose tissue macrophages (ATMs) that exist as a form of M2 macrophage in healthy adipose tissue and are polarized into M1 macrophages upon cellular stress. ATMs regulate adipose tissue inflammation by secreting cytokines, adipokines, and chemokines. CXC-motif receptor 6 (CXCR6) is the chemokine receptor and interactions with its specific ligand CXC-motif chemokine ligand 16 (CXCL16) modulate the migratory capacities of human adipose-derived mesenchymal stem cells (hADMSCs). CXCR6 is highly expressed on differentiated adipocytes that are non-migratory cells. To evaluate the underlying mechanisms of CXCR6 in adipocytes, THP-1 human monocytes that can be polarized into M1 or M2 macrophages were co-cultured with adipocytes. As results, expression levels of the M1 polarization-inducing factor were decreased, while those of the M2 polarization-inducing factor were significantly increased in differentiated adipocytes in a co-cultured environment with additional CXCL16 treatment. After CXCL16 treatment, the anti-inflammatory factors, including p38 MAPK ad ERK1/2, were upregulated, while the pro-inflammatory pathway mediated by Akt and NF-κB was downregulated in adipocytes in a co-cultured environment. These results revealed that the CXCL16/CXCR6 axis in adipocytes regulates M1 or M2 polarization and displays an immunosuppressive effect by modulating pro-inflammatory or anti-inflammatory pathways. Our results may provide an insight into a potential target as a regulator of the immune response via the CXCL16/CXCR6 axis in adipocytes.


Author(s):  
Jianhai Bi ◽  
Qiuchen Li ◽  
Zhigang Yang ◽  
Lei Cai ◽  
Tao Lv ◽  
...  

In modern society excessive consumption of a high-fat diet (HFD) is a significant risk factor for many diseases such as diabetes, osteoarthritis and certain cancers. Resolving cellular and molecular mechanisms underlying HFD-associated disorders is of great importance to human health. Mesenchymal stem cells (MSCs) are key players in tissue homeostasis and adversely affected by prolonged HFD feeding. Low-grade systemic inflammation induced by HFD is characterized by increased levels of pro-inflammatory cytokines and alters homeostasis in many organs. However, whether, which and how HFD associated inflammatory cytokines impair MSCs remain unclear. Here we demonstrated that HFD induced serum cytokines disturbances, especially a continuous elevation of serum CXCL2 level in rats. Coincidentally, the differentially expressed genes (DEGs) of bone marrow MSCs (BMSCs) which functions were impaired in HFD rats were enriched in cytokine signaling. Further mechanism analysis revealed that CXCL2 treatment in vitro suppresses the adipogenic potential of BMSCs via Rac1 activation, and promoted BMSC migration and senescence by inducing over-production of ELMO1 and reactive oxygen species (ROS) respectively. Moreover, we found that although glycolipid metabolism indicators can be corrected, the CXCL2 elevation and BMSC dysfunctions cannot be fully rescued by diet correction and anti-inflammatory aspirin treatment, indicating the long-lasting deleterious effects of HFD on serum CXCL2 levels and BMSC functions. Altogether, our findings identify CXCL2 as an important regulator in BMSCs functions and may serve as a serum marker to indicate the BMSC dysfunctions induced by HFD. In addition, our findings underscore the intricate link among high-fat intake, chronic inflammation and BMSC dysfunction which may facilitate development of protective strategies for HFD associated diseases.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124369 ◽  
Author(s):  
Patricia de Godoy Bueno ◽  
Juliana Navarro Ueda Yochite ◽  
Graziela Fernanda Derigge-Pisani ◽  
Kelen Cristina Ribeiro Malmegrim de Farias ◽  
Lucimar Retto da Silva de Avó ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 36
Author(s):  
Chao-Yuan Chang ◽  
Kung-Yen Chen ◽  
Hung-Jen Shih ◽  
Milton Chiang ◽  
I-Tao Huang ◽  
...  

Obesity complicates sepsis and increases the mortality of sepsis. We examined the effects of exosomes (from human placenta choriodecidual membrane-derived mesenchymal stem cells, pcMSCs) on preventing sepsis in obesity and the mitigating role of hsa-let-7i-5p microRNA. Obese mice (adult male C57BL/6J mice fed a high-fat diet for 12 weeks) received normal saline (HFD), endotoxin (10 mg/kg, intraperitoneal (ip); HFDLPS), endotoxin with exosomes (1 × 108 particles/mouse, ip; HLE), or endotoxin with let-7i-5p microRNA inhibitor-pretreated exosomes (1 × 108 particles/mouse, ip; HLEi). Our data demonstrated that the 48-h survival rate in the HLE (100%) group was significantly higher than in the HFDLPS (50%) and HLEi (58.3%) groups (both p < 0.05). In the surviving mice, by contrast, levels of liver injury (injury score, plasma aspartate transaminase and alanine transaminase concentrations, tissue water content, and leukocyte infiltration in liver tissues; all p < 0.05), inflammation (nuclear factor-κB activation, hypoxia-inducible factor-1α activation, macrophage activation, and concentrations of tumor necrosis factor-α, interleukin-6, and leptin in liver tissues; all p < 0.05), and oxidation (malondialdehyde in liver tissues, with p < 0.001) in the HLE group were significantly lower than in the HFDLPS group. Levels of mitochondrial injury/dysfunction and apoptosis in liver tissues in the HLE group were also significantly lower than in the HFDLPS group (all p < 0.05). Inhibition of let-7i-5p microRNA offset the effects of the exosomes, with most of the aforementioned measurements in the HLEi group being significantly higher than in the HLE group (all p < 0.05). In conclusion, exosomes mitigated endotoxin-induced mortality and liver injury in obese mice, and these effects were mediated by let-7i-5p microRNA.


Sign in / Sign up

Export Citation Format

Share Document