scholarly journals A novel mutation of SATB2 inhibits odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tianyi Xin ◽  
Qian Li ◽  
Rushui Bai ◽  
Ting Zhang ◽  
Yanheng Zhou ◽  
...  

Abstract Background SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. Methods We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. Results As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/β-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active β-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/β-catenin signaling pathway. Conclusion We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.

2021 ◽  
Author(s):  
Yuhua Pan ◽  
Ting Lu ◽  
Ling Peng ◽  
Qi Zeng ◽  
Xiangyu Huang ◽  
...  

Abstract BackgroundMutations of the Ectodysplasin-A (EDA) gene are generally associated with other developmental anomalies (syndrome hypohidrotic ectodermal dysplasia) or as an isolated condition (non-syndromic tooth agenesis). The influence of EDA mutations on dentinogenesis and odontoblast differentiation have not been reported. The aim of the present study was to identify genetic clues for familial nonsyndromic oligodontia and explore the underlying mechanisms, focusing on the role of human dental pulp stem cells (hDPSCs).MethodsThe candidate genes sequences were performed by PCR amplification and Sanger sequencing. Functional analysis and pathogenesis associated with EDA mutations in hDPSCs were also investigated to explore the impact of the identified mutation on this phenotype. Capillary electrophoresis (CE) was used to detect X chromosome inactivation (XCI) on the blood of female carrier.ResultsIn this study, we identified a reported EDA mutation in a Chinese family:a missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with those transfected with control EDA lentivirus. Mechanically, the mutant EDA inhibited the activation of the NF-κB pathway. The results of CE showed that symptomatic female carrier had a skewed XCI with a preferential inactivation of the X chromosome carrying the normal allele.ConclusionIn summary, we demonstrated EDA mutation result in non-syndromic tooth agenesis in heterozygous females and mechanically EDA regulates odontogenesis through the NF-κB signaling pathway in human dental pulp stem cells.


2021 ◽  
Vol 11 (16) ◽  
pp. 7563
Author(s):  
Duaa Abuarqoub ◽  
Rand Zaza ◽  
Nazneen Aslam ◽  
Hanan Jafar ◽  
Suzan Zalloum ◽  
...  

The clinical use of bioactive material in the field of biomedical tissue engineering has become increasingly of interest in practice. This study investigates how BiodentineTM (BD), a tricalcium silicate cement, in culture media, affects the odonto/osteogenic differentiation potential of in vitro cultured human dental pulp stem cells (hDPSCs). hDPSCs were extracted and characterized for their expression profile by flow cytometry. Then, hDPSCs were cultured in media containing BD for 3 weeks to study the impact of BD on the odonto/osteogenesis pathway, compared to the positive control (osteogenic media) and negative control (cell culture media). Odonto/osteogenic differentiation of hDPSCs treated with BD was assessed by measuring the level of expression of odonto/osteogenic markers by flow cytometry, ELISA and Alizarin red stain. Additionally, the expression profile of the genes involved in the odonto/osteogenesis pathway was investigated, using PCR array. Our results indicate that hDPSCs treatment with BD results in an increased tendency for odonto/osteogenic differentiation. The BD treated group demonstrates a significant increase in the expression of odonto/osteogenic markers, osteocalcin (OCN) (p < 0.005), osteopontin (OPN) (p < 0.0005) and alkaline phosphatase (ALP) (p < 0.0005), and the presentation of calcium deposits by ARS, compared to the negative control by using t-test and ANOVA. Moreover, the BD-treated group is marked by the upregulation of genes related to the odonto/osteogenesis pathway, compared to the control groups, specifically the genes that are involved in the bone morphogenic protein (BMP) (p < 0.05) signaling pathway, the activation of the extracellular matrix-related gene (ECMG) (p < 0.05) and the Ca2+ signaling pathway (p < 0.05), compared to day 1 of treatment by using ANOVA. BD shows a stimulatory effect on the odonto/steogenic capacity of hDPSCs, suggesting BD as a good candidate and a very promising and useful means to be applied in regenerative medicine to regenerate dentine tissue in clinical settings.


2020 ◽  
Vol 11 ◽  
pp. 204173142097556
Author(s):  
Qiaoqiao Jin ◽  
Peilun Li ◽  
Keyong Yuan ◽  
Fen Zhao ◽  
Xiaohan Zhu ◽  
...  

Recent studies have shown that co-culture systems play an important role in bone tissue engineering. In this study, human dental pulp stem cells (hDPSCs) were co-cultured with human adipose-derived stem cells (hADSCs), and osteoblastic phenotypes were found to be enhanced in co-cultures compared with monocultures of hDPSCs or hADSCs. Furthermore, GW4869, an inhibitor of extracellular vesicle (EV) formation, suppressed the mineralization of co-cultured cells. Studies indicate that the therapeutic potential of DPSCs is realized through paracrine action, in which EVs play an important role. To study their role, we successfully obtained and identified hDPSC-derived extracellular vesicles (hDPSC-EVs), and further investigated their effects on hADSCs and the underlying mechanism. hADSCs were stimulated with hDPSC-EVs, which were found to promote the migration and mineralization of hADSCs. Moreover, hDPSC-EVs promoted osteogenic differentiation by enhancing the phosphorylation of ERK 1/2 and JNK in hADSCs. To investigate the specific proteins in EVs that might play a role in hADSC osteogenic differentiation, we performed proteomic analysis of hDPSC-EVs. We determined the top 30 enriched pathways, which notably included the insulin signaling pathway. The number of genes enriched in the insulin signaling pathway was the largest, in addition to the “protein processing in endoplasmic reticulum” term. The MAPK cascade is a typical downstream pathway mediating insulin signaling. To further study the effects of hDPSC-EVs on maxillofacial bone regeneration, we used hDPSC-EVs as a cell-free biomaterial in a model of mandibular defects in rats. To assess the therapeutic potential of EVs, we analyzed their proteome. Animal experiments demonstrated that hDPSC-EVs promoted the regeneration of bone defects. Overall, these results highlight the potential of hDPSC-EVs to induce lineage specific differentiation of hADSCs. The results also indicated the importance of considering hDPSC-EVs as biomimetic materials for clinical translation of treatments for oral maxillofacial defects.


Sign in / Sign up

Export Citation Format

Share Document