scholarly journals Research on application of GPS-based wireless communication system in highway landslide

Author(s):  
Zhiwen Xiong

AbstractMachine learning is a branch of the field of artificial intelligence. Deep learning is a complex machine learning algorithm that has unique advantages in image recognition, speech recognition, natural language processing, and industrial process control. Deep learning has It is widely used in the field of wireless communication. Prediction of geological disasters (such as landslides) is currently a difficult problem. Because landslides are difficult to detect in the early stage, this paper proposes a GPS-based wireless communication continuous detection system and applies it to landslide deformation monitoring to achieve early treatment and prevention. This article introduces the GPS multi-antenna detection system based on deep learning wireless communication, and introduces the time series analysis method and its application. The test results show that the GPS multi-antenna detection system of the wireless communication network has great advantages in response time, with high accuracy and small error. The horizontal accuracy is controlled at 0–2 mm and the vertical accuracy is about 1 mm. The analysis method is simple and efficient, and can obtain good results for short-term deformation prediction.

2020 ◽  
Vol 3 (3) ◽  
pp. 202-213
Author(s):  
Lu Chen ◽  
Chunchao Xia ◽  
Huaiqiang Sun

ABSTRACT Deep learning (DL) is a recently proposed subset of machine learning methods that has gained extensive attention in the academic world, breaking benchmark records in areas such as visual recognition and natural language processing. Different from conventional machine learning algorithm, DL is able to learn useful representations and features directly from raw data through hierarchical nonlinear transformations. Because of its ability to detect abstract and complex patterns, DL has been used in neuroimaging studies of psychiatric disorders, which are characterized by subtle and diffuse alterations. Here, we provide a brief review of recent advances and associated challenges in neuroimaging studies of DL applied to psychiatric disorders. The results of these studies indicate that DL could be a powerful tool in assisting the diagnosis of psychiatric diseases. We conclude our review by clarifying the main promises and challenges of DL application in psychiatric disorders, and possible directions for future research.


Author(s):  
Chandrahas Mishra ◽  
D. L. Gupta

Deep learning is a technique of machine learning in artificial intelligence area. Deep learning in a refined "machine learning" algorithm that far surpasses a considerable lot of its forerunners in its capacities to perceive syllables and picture. Deep learning is as of now a greatly dynamic examination territory in machine learning and example acknowledgment society. It has increased colossal triumphs in an expansive zone of utilizations, for example, speech recognition, computer vision and natural language processing and numerous industry item. Neural network is used to implement the machine learning or to design intelligent machines. In this paper brief introduction to all machine learning paradigm and application area of deep machine learning and different types of neural networks with applications is discussed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1113
Author(s):  
Ming Zhong ◽  
Yajin Zhou ◽  
Gang Chen

IoT plays an important role in daily life; commands and data transfer rapidly between the servers and objects to provide services. However, cyber threats have become a critical factor, especially for IoT servers. There should be a vigorous way to protect the network infrastructures from various attacks. IDS (Intrusion Detection System) is the invisible guardian for IoT servers. Many machine learning methods have been applied in IDS. However, there is a need to improve the IDS system for both accuracy and performance. Deep learning is a promising technique that has been used in many areas, including pattern recognition, natural language processing, etc. The deep learning reveals more potential than traditional machine learning methods. In this paper, sequential model is the key point, and new methods are proposed by the features of the model. The model can collect features from the network layer via tcpdump packets and application layer via system routines. Text-CNN and GRU methods are chosen because the can treat sequential data as a language model. The advantage compared with the traditional methods is that they can extract more features from the data and the experiments show that the deep learning methods have higher F1-score. We conclude that the sequential model-based intrusion detection system using deep learning method can contribute to the security of the IoT servers.


Intrusion Detection System observes the network traffic and identifies the attack and also inform the admin to corrective action. Powerful Intrusion Detection system is required for detection to various modern attack. There is need of efficient Intrusion Detection system .The focus of IDS research is the application of machine Learning and Deep Learning techniques. Projected work is combination of Deep Learning Technique in which Non Symmetric Deep Auto Encoder and Machine Learning Algorithm, Support Vector Machine Classifier is used to develop the Model. Stack power of the Non symmetric Deep Auto Encoder and Quickness with exactness of the SVM makes the Model very efficient. This Model not only improves the accuracy value but also improve recall and precision. It also cause the reduction of training time .To evaluate the performance of the Model and do the analysis the special Data set which are used are KDD CUP and NSL KDD Dataset.


2020 ◽  
Author(s):  
vinayakumar R

<p><b>Social media is a platform in which tons and tons of text are generated each and every day. The data is so large that cannot be easily understood, so this has paved a path to a new field in the information technology which is natural language processing. In this paper, the text data which is used for the classification is tweets that determines the state of the person according of the sentiments which is positive, negative and neutral. Emotions are the way of expression of the person’s feelings which has a high influence on the decision making tasks. Here we have proposed the text representation, Term Frequency Inverse Document Frequency (tfidf), Keras embedding along with the machine learning and deep learning algorithms for the purpose of the classification of the sentiments, out of which Logistics Regression machine learning based methods out performs well when the features is taken in the limited amount as the features increases Support Vector Machine (SVM) which is also one of the machine learning algorithm out performs well making a benchmark accuracy for this dataset as the 75.8%. For the research purpose the dataset has been made publically available.</b><b></b></p>


2020 ◽  
Author(s):  
vinayakumar R

<p><b>Social media is a platform in which tons and tons of text are generated each and every day. The data is so large that cannot be easily understood, so this has paved a path to a new field in the information technology which is natural language processing. In this paper, the text data which is used for the classification is tweets that determines the state of the person according of the sentiments which is positive, negative and neutral. Emotions are the way of expression of the person’s feelings which has a high influence on the decision making tasks. Here we have proposed the text representation, Term Frequency Inverse Document Frequency (tfidf), Keras embedding along with the machine learning and deep learning algorithms for the purpose of the classification of the sentiments, out of which Logistics Regression machine learning based methods out performs well when the features is taken in the limited amount as the features increases Support Vector Machine (SVM) which is also one of the machine learning algorithm out performs well making a benchmark accuracy for this dataset as the 75.8%. For the research purpose the dataset has been made publically available.</b><b></b></p>


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


Sign in / Sign up

Export Citation Format

Share Document