scholarly journals Driving mosaicism: somatic variants in reference population databases and effect on variant interpretation in rare genetic disease

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Vladimir Avramović ◽  
Simona Denise Frederiksen ◽  
Marjana Brkić ◽  
Maja Tarailo-Graovac

Abstract Background Genetic variation databases provide invaluable information on the presence and frequency of genetic variants in the ‘untargeted’ human population, aggregated with the primary goal to facilitate the interpretation of clinically important variants. The presence of somatic variants in such databases can affect variant assessment in undiagnosed rare disease (RD) patients. Previously, the impact of somatic mosaicism was only considered in relation to two Mendelian disease-associated genes. Here, we expand the analyses to identify additional mosaicism-prone genes in blood-derived reference population databases. Results To identify additional mosaicism-prone genes relevant to RDs, we focused on known/previously established ClinVar pathogenic and likely pathogenic single-nucleotide variants, residing in genes associated with early onset, severe autosomal dominant diseases. We asked whether any of these variants are present in a higher-than-expected frequency in the reference population databases and whether there is evidence of somatic origin (i.e., allelic imbalance) rather than germline heterozygosity (~ half of the reads supporting alternative allele). The mosaicism-prone genes identified were further categorized according to the processes they are involved in. Beyond the previously reported ASXL1 and DNMT3A, we identified 7 additional autosomal dominant RD-associated genes with known pathogenic single-nucleotide variants present in the reference population databases and good evidence of allelic imbalance: BRAF, CBL, FGFR3, IDH2, KRAS, PTPN11 and SETBP1. From this group of 9 genes, the majority (n = 7) was important for hematopoiesis. In addition, 4 of these genes were involved in cell proliferation. Further assessment of the known 156 hematopoietic genes led to identification of 48 genes (21 not yet associated with RDs) with at least some evidence of mosaicism detectable in reference population databases. Conclusions These results stress the importance of considering genes involved in hematopoiesis and cell proliferation when interpreting the presence and frequency of genetic variants in blood-derived reference population databases, both public and private. This is especially important when considering new variants of uncertain significance in known hematopoietic/cell proliferation RD genes and future novel gene–disease associations involving this class of genes.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gavin W. Wilson ◽  
Mathieu Derouet ◽  
Gail E. Darling ◽  
Jonathan C. Yeung

AbstractIdentifying single nucleotide variants has become common practice for droplet-based single-cell RNA-seq experiments; however, presently, a pipeline does not exist to maximize variant calling accuracy. Furthermore, molecular duplicates generated in these experiments have not been utilized to optimally detect variant co-expression. Herein, we introduce scSNV designed from the ground up to “collapse” molecular duplicates and accurately identify variants and their co-expression. We demonstrate that scSNV is fast, with a reduced false-positive variant call rate, and enables the co-detection of genetic variants and A>G RNA edits across twenty-two samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sebastian Carrasco Pro ◽  
Katia Bulekova ◽  
Brian Gregor ◽  
Adam Labadorf ◽  
Juan Ignacio Fuxman Bass

Abstract Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated ‘gainability’ and ‘disruptability’ scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to alter TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic mutations have different effects on TF binding sites from different TF families on a cancer-type basis. Finally, we discuss the relationship between these results and cancer mutational signatures. Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or disease association on TF binding to gene regulatory regions.


Author(s):  
Jacqueline Neubauer ◽  
Shouyu Wang ◽  
Giancarlo Russo ◽  
Cordula Haas

AbstractSudden unexplained death (SUD) takes up a considerable part in overall sudden death cases, especially in adolescents and young adults. During the past decade, many channelopathy- and cardiomyopathy-associated single nucleotide variants (SNVs) have been identified in SUD studies by means of postmortem molecular autopsy, yet the number of cases that remain inconclusive is still high. Recent studies had suggested that structural variants (SVs) might play an important role in SUD, but there is no consensus on the impact of SVs on inherited cardiac diseases. In this study, we searched for potentially pathogenic SVs in 244 genes associated with cardiac diseases. Whole-exome sequencing and appropriate data analysis were performed in 45 SUD cases. Re-analysis of the exome data according to the current ACMG guidelines identified 14 pathogenic or likely pathogenic variants in 10 (22.2%) out of the 45 SUD cases, whereof 2 (4.4%) individuals had variants with likely functional effects in the channelopathy-associated genes SCN5A and TRDN and 1 (2.2%) individual in the cardiomyopathy-associated gene DTNA. In addition, 18 structural variants (SVs) were identified in 15 out of the 45 individuals. Two SVs with likely functional impairment were found in the coding regions of PDSS2 and TRPM4 in 2 SUD cases (4.4%). Both were identified as heterozygous deletions, which were confirmed by multiplex ligation-dependent probe amplification. In conclusion, our findings support that SVs could contribute to the pathology of the sudden death event in some of the cases and therefore should be investigated on a routine basis in suspected SUD cases.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii32-ii32
Author(s):  
Charlotte Eaton ◽  
Paola Bisignano ◽  
David Raleigh

Abstract BACKGROUND Alterations in the NF2 tumor suppressor gene lead to meningiomas and schwannomas, but the tumor suppressor functions of the NF2 gene product, Merlin, are incompletely understood. To address this problem, we performed a structure-function analysis of Merlin by expressing cancer-associated missense single-nucleotide variants (mSNVs) in primary cancer cells for biochemical and cell biology experiments. METHODS All NF2 mSNVs were assembled from cBioPortal and COSMIC, and modelled on the FERM, a-helical, and C-terminal domains of Merlin (PDB 4ZRJ) using comparative structure prediction on the Robetta server and visually inspected using Pymol. mSNV hotspots were defined from sliding windows with at least 10 mutations within 5 residues in either direction. mSNVs from hotspots in meningiomas, schwannomas, or both, were selected for in vitro mechanistic analyses using immunofluorescence and immunoblotting of whole cell, plasma membrane, cytoskeletal, cytoplasmic, nuclear, and chromatin subcellular fractions from M10G meningioma cells and HEI-193 schwannoma cells. RESULTS We identified the following cancer-associated hotspot mSNVs in NF2, which were over-expressed for mechanistic studies: L46R, S156N, W191R, A211D, V219M, R418C and R462K. Endogenous Merlin was detected in all subcellular compartments, but was enriched in the nucleus. L46R and A211D mapped to hydrophobic pockets in the FERM domain, destabilized Merlin, and excluded Merlin from all subcellular compartments except the cytoskeleton. S156N, W191R and V219M also mapped to the FERM domain, but did not affect Merlin stability, and V219M attenuated chromatin localization, suggesting this motif may be involved in binding events that regulate subcellular localization. R418C and R463K mapped to the a-helical domain, but only R418C destabilized Merlin. CONCLUSION Our results suggest that cancer-associated mSNVs inactive the tumor suppressor functions of NF2 by altering the stability, subcellular localization, or binding partners of Merlin. Further work is required to identify and understand the impact of binding partners and subcellular localization on Merlin function.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hai Lin ◽  
Katherine A. Hargreaves ◽  
Rudong Li ◽  
Jill L. Reiter ◽  
Yue Wang ◽  
...  

AbstractSingle nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis.


2019 ◽  
Vol 47 (W1) ◽  
pp. W136-W141 ◽  
Author(s):  
Emidio Capriotti ◽  
Ludovica Montanucci ◽  
Giuseppe Profiti ◽  
Ivan Rossi ◽  
Diana Giannuzzi ◽  
...  

Abstract As the amount of genomic variation data increases, tools that are able to score the functional impact of single nucleotide variants become more and more necessary. While there are several prediction servers available for interpreting the effects of variants in the human genome, only few have been developed for other species, and none were specifically designed for species of veterinary interest such as the dog. Here, we present Fido-SNP the first predictor able to discriminate between Pathogenic and Benign single-nucleotide variants in the dog genome. Fido-SNP is a binary classifier based on the Gradient Boosting algorithm. It is able to classify and score the impact of variants in both coding and non-coding regions based on sequence features within seconds. When validated on a previously unseen set of annotated variants from the OMIA database, Fido-SNP reaches 88% overall accuracy, 0.77 Matthews correlation coefficient and 0.91 Area Under the ROC Curve.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3422-3422
Author(s):  
Melinda M Dean ◽  
Katrina Kildey ◽  
Thu V Tran ◽  
Kelly Rooks ◽  
Shoma Baidya ◽  
...  

Abstract Introduction During routine storage packed red blood cells (PRBC) undergo biochemical and biophysical changes collectively referred to as the “RBC storage lesion”. Donor-to-donor variability in the severity of the storage lesion has been reported. The extent to which donor-associated differences in blood component storage affect blood product quality and post-transfusion outcome remains unknown. Murine models with single nucleotide variants (SNV) in gene encoding spectrin-1β were used to investigate the impact of mutations on the RBC storage lesion. Methods Two murine lineages with N-ethyl-N-nitrosourea (ENU) generated single SNV in Spnb1, encoding spectrin-1β (Table 1), were selected from the Australian Phenomics Facility library (http://databases.apf.edu.au/mutations). Using genetic selection, homozygous (HOM), heterozygous (HET) and unaffected (WT) mice from each strain were generated (C57BL/6 background strain). Murine blood was leucoreduced, prepared in SAGM (0.4 HCT) and stored at 4°C for time course assessment of RBC characteristics. At day (D), D2, D7, D14 and D21 of storage, RBC integrity and evidence of storage-related changes were investigated using RBC osmotic fragility and flow cytometric analysis of CD44, CD47, TER119 and phosphatidylserine (PS). Data were generated from analysis of blood from Spnb1 (pedigree spectrin-1β a) homozygous (HOM, n=3), heterozygous (HET, n=3) and unaffected (WT, n=2 ); Spnb1 (pedigree spectrin-1β b) HOM (n=4), HET( n=4); C57BL/6 (n=4). The Mann-Whitney Test and ANOVA were utilised for statistical analyses (95% CI). Results At D2 of storage SNV in Spnb1 did not alter RBC characteristics, with all mice studied demonstrating a similar resistance to osmotic lysis and levels of CD44, CD47, TER119 and PS. By D7 of storage, clear pedigree-related differences in RBC characteristics were evident. At D7, RBC from spectrin-1β(a) HOM mice had significantly increased osmotic fragility and exposure of PS as well as significantly reduced CD44 and TER119 expression compared to unaffected siblings and background strain. Of note, these changes were not evident in the spectrin-1β(b) HOM mice at D7. For both strains at D7, heterozygous SNV did not exhibit altered storage parameters. By D14 both HOM and HET spectrin-1β(a) mice demonstrated a phenotype consistent with an exacerbated RBC storage lesion, characterised by significantly increased osmotic fragility and exposure of PS, and reduced CD44 and CD47 compared to background strain. At D14 there was also evidence of exacerbation of the storage lesion in stored RBC from HOM spectrin-1β(b) mice (significantly increased PS), though this was not to the extent observed in the spectrin-1β(a) mice. By D21 all murine RBC were substantially degraded under these storage conditions. Conclusions SNV in Spnb1,encoding RBC structural protein spectrin-1β, resulted in both early onset and exacerbation of the RBC storage lesion. Further, the degree of storage lesion and the point at which RBC degradation was observed was not only dependent on the homozygous or heterozygous status, but the mutation itself. These data demonstrate that minor genetic variation in genes encoding important RBC proteins contribute to donor related differences in PRBC storage. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Turki Sobahy ◽  
Meshari Alazmi

Genomic medicine stands to be revolutionized through the understanding of single nucleotide variants (SNVs) and their expression in single-gene disorders (mendelian diseases). Computational tools can play a vital role in the exploration of such variations and their pathogenicity. Consequently, we developed the ensemble prediction tool AllelePred to identify deleterious SNVs and disease causative genes. In comparison to other tools, our classifier achieves higher accuracy, precision, F1 score, and coverage for different types of coding variants. Furthermore, this research analyzes and structures 168,945 broad spectrum genetic variants from the genomes of the Saudi population to denote the accuracy of the model. When compared, AllelePred was able to structure the unlabeled Saudi genetic variants of the dataset to mimic the data characteristics of the known labeled data. On this basis, we accumulated a list of highly probable deleterious variants that we recommend for further experimental validation prior to medical diagnostic usage.<br>


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251585
Author(s):  
Pete Heinzelman ◽  
Philip A. Romero

Understanding how human ACE2 genetic variants differ in their recognition by SARS-CoV-2 can facilitate the leveraging of ACE2 as an axis for treating and preventing COVID-19. In this work, we experimentally interrogate thousands of ACE2 mutants to identify over one hundred human single-nucleotide variants (SNVs) that are likely to have altered recognition by the virus, and make the complementary discovery that ACE2 residues distant from the spike interface influence the ACE2-spike interaction. These findings illuminate new links between ACE2 sequence and spike recognition, and could find substantial utility in further fundamental research that augments epidemiological analyses and clinical trial design in the contexts of both existing strains of SARS-CoV-2 and novel variants that may arise in the future.


Cephalalgia ◽  
2006 ◽  
Vol 26 (2) ◽  
pp. 158-161 ◽  
Author(s):  
S Schwaag ◽  
S Evers ◽  
A Schirmacher ◽  
F Stögbauer ◽  
EB Ringelstein ◽  
...  

Mutations in the NOTCH3 gene cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Exons 3 and 4 are mutation hotspots. Migraine is a clinical hallmark of CADASIL. The objective of this study was to investigate whether genetic variants in exons 3 and 4 of the NOTCH3 gene are associated with migraine. Exons 3 and 4 of the NOTCH3 were analysed for mutations and polymorphisms by direct DNA sequencing in 97 migraineurs and the same number of control individuals. No mutations in exons 3 and 4 of the NOTCH3 gene were found in 97 patients with migraine. However, association analysis revealed significant association of the single nucleotide polymorphism (SNP) rs1043994 with migraine.


Sign in / Sign up

Export Citation Format

Share Document