scholarly journals Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joanna E. Pankiewicz ◽  
Anita M. Lizińczyk ◽  
Leor A. Franco ◽  
Jenny R. Diaz ◽  
Mitchell Martá-Ariza ◽  
...  

AbstractPrion diseases or prionoses are a group of rapidly progressing and invariably fatal neurodegenerative diseases. The pathogenesis of prionoses is associated with self-replication and connectomal spread of PrPSc, a disease specific conformer of the prion protein. Microglia undergo activation early in the course of prion pathogenesis and exert opposing roles in PrPSc mediated neurodegeneration. While clearance of PrPSc and apoptotic neurons have disease-limiting effect, microglia-driven neuroinflammation bears deleterious consequences to neuronal networks. Apolipoprotein (apo) E is a lipid transporting protein with pleiotropic functions, which include controlling of the phagocytic and inflammatory characteristics of activated microglia in neurodegenerative diseases. Despite the significance of microglia in prion pathogenesis, the role of apoE in prionoses has not been established. We showed here that infection of wild type mice with 22L mouse adapted scrapie strain is associated with significant increase in the total brain apoE protein and mRNA levels and also with a conspicuous cell-type shift in the apoE expression. There is reduced expression of apoE in activated astrocytes and marked upregulation of apoE expression by activated microglia. We also showed apoE ablation exaggerates PrPSc mediated neurodegeneration. Apoe−/− mice have shorter disease incubation period, increased load of spongiform lesion, pronounced neuronal loss, and exaggerated astro and microgliosis. Astrocytes of Apoe−/− mice display salient upregulation of transcriptomic markers defining A1 neurotoxic astrocytes while microglia show upregulation of transcriptomic markers characteristic for microglial neurodegenerative phenotype. There is impaired clearance of PrPSc and dying neurons by microglia in Apoe−/− mice along with increased level of proinflammatory cytokines. Our work indicates that apoE absence renders clearance of PrPSc and dying neurons by microglia inefficient, while the excess of neuronal debris promotes microglial neurodegenerative phenotype aggravating the vicious cycle of neuronal death and neuroinflammation.

2015 ◽  
Vol 89 (15) ◽  
pp. 7660-7672 ◽  
Author(s):  
Leonardo M. Cortez ◽  
Jody Campeau ◽  
Grant Norman ◽  
Marian Kalayil ◽  
Jacques Van der Merwe ◽  
...  

ABSTRACTPrion diseases are fatal neurodegenerative disorders associated with the conversion of cellular prion protein (PrPC) into its aberrant infectious form (PrPSc). There is no treatment available for these diseases. The bile acids tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) have been recently shown to be neuroprotective in other protein misfolding disease models, including Parkinson's, Huntington's and Alzheimer's diseases, and also in humans with amyotrophic lateral sclerosis. Here, we studied the therapeutic efficacy of these compounds in prion disease. We demonstrated that TUDCA and UDCA substantially reduced PrP conversion in cell-free aggregation assays, as well as in chronically and acutely infected cell cultures. This effect was mediated through reduction of PrPScseeding ability, rather than an effect on PrPC. We also demonstrated the ability of TUDCA and UDCA to reduce neuronal loss in prion-infected cerebellar slice cultures. UDCA treatment reduced astrocytosis and prolonged survival in RML prion-infected mice. Interestingly, these effects were limited to the males, implying a gender-specific difference in drug metabolism. Beyond effects on PrPSc, we found that levels of phosphorylated eIF2α were increased at early time points, with correlated reductions in postsynaptic density protein 95. As demonstrated for other neurodegenerative diseases, we now show that TUDCA and UDCA may have a therapeutic role in prion diseases, with effects on both prion conversion and neuroprotection. Our findings, together with the fact that these natural compounds are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans, make these compounds promising alternatives for the treatment of prion diseases.IMPORTANCEPrion diseases are fatal neurodegenerative diseases that are transmissible to humans and other mammals. There are no disease-modifying therapies available, despite decades of research. Treatment targets have included inhibition of protein accumulation, clearance of toxic aggregates, and prevention of downstream neurodegeneration. No one target may be sufficient; rather, compounds which have a multimodal mechanism, acting on different targets, would be ideal. TUDCA and UDCA are bile acids that may fulfill this dual role. Previous studies have demonstrated their neuroprotective effects in several neurodegenerative disease models, and we now demonstrate that this effect occurs in prion disease, with an added mechanistic target of upstream prion seeding. Importantly, these are natural compounds which are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans with primary biliary cirrhosis. They have recently been proven efficacious in human amyotrophic lateral sclerosis. Therefore, these compounds are promising options for the treatment of prion diseases.


Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 656
Author(s):  
Dariusz Koziorowski ◽  
Monika Figura ◽  
Łukasz M. Milanowski ◽  
Stanisław Szlufik ◽  
Piotr Alster ◽  
...  

Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110097
Author(s):  
Kui Cui ◽  
Fan Yang ◽  
Turan Tufan ◽  
Muhammad U. Raza ◽  
Yanqiang Zhan ◽  
...  

Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


1993 ◽  
Vol 292 (1) ◽  
pp. 105-111 ◽  
Author(s):  
L Dory

Phorbol ester-mediated differentiation of THP-1 cells (a human monocytic cell line) into mature macrophages is associated with a transcriptional induction of apolipoprotein E (apoE) expression [Auwerx, Deeb, Brunzell, Peng and Chait (1988) Biochemistry 27, 2651-2655]. Endotoxin, on the other hand, which may also act through activation of protein kinase C, is a potent inhibitor of apoE expression in mouse macrophages [Werb and Chin (1983) J. Biol. Chem. 258, 10642-10648]. The present experiments examine the effect of phorbol ester, an activator of protein kinase C, on the apoE expression in mouse thioglycollate-elicited peritoneal macrophages. Phorbol ester inhibits apoE expression in a specific, time- and dose-dependent manner. A 75% inhibition in the rate of apoE secretion, but not that of total protein, was observed following a 4.5 h incubation with 160 nM phorbol ester, although nearly full inhibition was obtained with 40 nM. The changes in apoE secretion were paralleled by similar changes in apoE synthesis, indicating synthesis as the primary site of action. The decreased rates of apoE synthesis are shown not to be due to increased apoE degradation. The profound inhibition of apoE synthesis was not accompanied by significant changes in apoE mRNA levels at any concentration of phorbol ester (up to 16 microM), or length of treatment (up to 24 h), suggesting a post-transcriptional locus of regulation of apoE expression. Although the early changes in apoE synthesis correlate with increased microsomal protein kinase C activity, the suppression of apoE expression persists even during conditions of nearly complete (> 95%) loss of protein kinase C activity, suggesting that the direct or indirect effect of protein kinase C on apoE expression is mediated by a stable phosphorylated protein, or that the observed effects are mediated through a protein kinase C species that is not readily downregulated by phorbol esters. The presented studies clearly demonstrate the potential importance of the translational regulation of apoE expression through the protein kinase C signal transduction pathway.


Neurographics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127-148
Author(s):  
K.N. Anderson ◽  
W.B. Overcast ◽  
J.R. Brosch ◽  
B.D. Graner ◽  
M.C. Veronesi

Protein misfolding has been an area of intense research and is implicated in a number of neurodegenerative diseases. Key proteins in the brain lose their native ability to fold and instead assume abnormal conformations. Misfolded proteins cluster to form pathologic aggregates, which cause cellular dysfunction, neuronal death, and neurodegeneration. The prionopathies are best known among the neurodegenerative diseases for their ability to misfold, self-propagate, and infect other organisms. There is increasing evidence of a rationale for a prionlike mechanism of spread of other neurodegenerative diseases through a similar seeding mechanism. In this review, we detail the role of a key protein aberration known to the various prion diseases, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; variably protease-sensitive prionopathy; Gerstmann-Straussler-Scheinker disease; fatal familial insomnia; and kuru. We also discuss the clinical presentation, the available, and emerging imaging options for these diseases. In the second part of this review, we delineate how a prionlike seeding process may be driving the progression of other neurodegenerative diseases, including Parkinson disease, Alzheimer disease, and Huntington disease. A discussion of clinical presentation and imaging features of these example diseases follows to make a case for a common approach to developing imaging biomarkers and therapies of these diseases.Learning Objective: Upon completion of this article, one should be able to describe the various types of prion diseases, recognize and identify the common the neuro-imaging findings in prion diseases, describe seeding mechanism of prion disease, list the common amyloid PET tracers used for Alzheimer’s disease, and list common imaging biomarkers in neurodegenerative diseases.


2007 ◽  
Vol 10 (2) ◽  
pp. 3-14 ◽  
Author(s):  
M Ozansoy ◽  
A Başak

Tauopathies: A Distinct Class of Neurodegenerative DiseasesNeurodegenerative diseases are characterized by neuronal loss and intraneuronal accumulation of fibrillary materials, of which, neurofibrillary tangles (NFT) are the most common. Neurofibrillary tangles also occur in normal aging and contain the hyperphosphorylated microtubule-associated protein tau. A detailed presentation is made of the molecular bases of Alzheimer's disease (AD), postencephalitic parkinsonism, amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of Guam, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick's disease, frontotemporal dementia (FTD), Down's syndrome, myotonic dystrophy (DM) and Niemann-Pick Type C (NPC) disease, which are considered to be common tauopathies. The unique human tau gene extends over 100 kb of the long arm of chromosome 17 and contains 16 exons. The human brain contains six tau isoforms that contain from 352 to 441 amino acids. To date, 34 pathogenic tau mutations have been described among 101 families affected by FTD with parkinsonism linked to chromosome 17 (FTDP-17). These mutations may involve alternative splicing of exon 10 that lead to changes in the proportion of 4-repeat- and 3-repeat-tau isoforms, or may modify tau interactions with microtubules. Tau aggregates differ in degree of phosphorylation and in content of tau isoforms. Five classes of tauopathies have been defined depending on the type of tau aggregates. The key event in tauopathies is the disorganization of the cytoskeleton, which is based on mutations/polymorphisms in the tau gene and lead to nerve cell degeneration. In this review, tauopathies as a distinct class of neurodegenerative diseases are discussed with emphasis on their molecular pathology and genetics.


Sign in / Sign up

Export Citation Format

Share Document