scholarly journals In vitro antidermatophytic activity of bioactive compounds from selected medicinal plants

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daisy Savarirajan ◽  
V. M. Ramesh ◽  
Arunachalam Muthaiyan

AbstractFungal infections are among the most difficult diseases to manage in humans. Eukaryotic fungal pathogens share many similarities with their host cells, which impairs the development of antifungal compounds. Therefore, it is desirable to harness the pharmaceutical potential of medicinal plants for antifungal drug discovery. In this study, the antifungal activity of sixteen plant extracts was investigated against selected dermatophytic fungi. Of the sixteen plants, the cladode (leaf) of Asparagus racemosus, and seed extract of Cassia occidentalis showed antifungal activity against Microsporum gypseum, Microsporum nanum, Trichophyton mentagrophytes and Trichophyton terrestre. The plant antifungal compounds were located by direct bioassay against Cladosporium herbarum. IR and NMR spectrometry analyses of these compounds identified the presence of saponin (in A. racemosus) and hydroxy anthraquinone (in C. occidentalis) in these antifungal compounds. The antidermatophytic activity of plant anthraquinone and saponins with reports of little or no hemolytic activity, makes these compounds ideal for alternative antifungal therapy and warrants further in-depth investigation in vivo.

Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 894
Author(s):  
Vanessa Raquel Greatti ◽  
Fernando Oda ◽  
Rodrigo Sorrechia ◽  
Bárbara Regina Kapp ◽  
Carolina Manzato Seraphim ◽  
...  

Dermatophyte fungal infections are difficult to treat because they need long-term treatments. 4-Nerolidylcatechol (4-NC) is a compound found in Piper umbellatum that has been reported to demonstrate significant antifungal activity, but is easily oxidizable. Due to this characteristic, the incorporation in nanostructured systems represents a strategy to guarantee the compound’s stability compared to the isolated form and the possibility of improving antifungal activity. The objective of this study was to incorporate 4-NC into polymeric nanoparticles to evaluate, in vitro and in vivo, the growth inhibition of Microsporum canis. 4-NC was isolated from fresh leaves of P. umbellatum, and polymer nanoparticles of polycaprolactone were developed by nanoprecipitation using a 1:5 weight ratio (drug:polymer). Nanoparticles exhibited excellent encapsulation efficiency, and the antifungal activity was observed in nanoparticles with 4-NC incorporated. Polymeric nanoparticles can be a strategy employed for decreased cytotoxicity, increasing the stability and solubility of substances, as well as improving the efficacy of 4-NC.


2015 ◽  
pp. 1563-1570 ◽  
Author(s):  
Idriss Talibi ◽  
Latifa Askarne ◽  
Hassan Boubaker ◽  
El Hassane Boudyach ◽  
Abdellah Ait Ben Oumar

Author(s):  
Amanda P. Mattos ◽  
Fabricio P. Povh ◽  
Bruna B. Rissato ◽  
Vítor V. Schwan ◽  
Kátia R. F. Schwan-Estrada

Aims: This study is aimed to evaluate the in vitro antifungal activity effect of the crude aqueous extract (CAE), hydrolate (HY) and essential oil (EO) of Corymbia citriodora, Cymbopogon citratus, Cymbopogon flexuosus and Curcuma longa against the phytopathogenic fungi Alternaria steviae, Botryosphaeria dothidea, Colletotrichum gloeosporioides and Sclerotium rolfsii, and assess, in situ, the effectiveness of CAE of medicinal plants in reducing the severity of the cucumber anthracnose. Methodology: The EOs and HYs were obtained by hydrodistillation. The CAEs were prepared by the turbolysis method. Mycelial growth of the fungi was measured daily, by the diametrically opposite method. In the in vivo test, the CAEs were sprayed on the cotyledon leaves of healthy cucumber plants with three days after were inoculated with C. lagenarium. The severity of assessment of the disease was based on a scale of notes. Results: The medicinal plants studied showed antifungal activity against all or almost all pathogens. In general, treatment with CAE and HY of C. longa revealed the highest inhibition against the fungi tested. With the exception of the EO of C. longa, the other EOs showed total inhibition against all the fungi and in all the concentrations tested. Compared to control, in in vivo assays CAE of C. citratus presents a potential for control of cucumber anthracnose reducing the severity of the disease. Conclusion: The medicinal plants studied produce compounds associated with antimicrobial activity.


2013 ◽  
Vol 20 (4) ◽  
pp. 452-458 ◽  
Author(s):  
Stanislaw Schmidt ◽  
Stefanie-Yvonne Zimmermann ◽  
Lars Tramsen ◽  
Ulrike Koehl ◽  
Thomas Lehrnbecher

ABSTRACTAs a result of improved experimental methodologies and a better understanding of the immune system, there is increasing insight into the antifungal activity of natural killer (NK) cells. Murine and human NK cells are able to damage fungi of different genera and speciesin vitro, and they exert both direct and indirect antifungal activity through cytotoxic molecules such as perforin and through cytokines and interferons, respectively. On the other hand, recent data suggest that fungi exhibit immunosuppressive effects on NK cells. Whereas clearin vivodata are lacking in humans, the importance of NK cells in the host response against fungi has been demonstrated in animal models. Further knowledge of the interaction of NK cells with fungi might help to better understand the pathogenesis of invasive fungal infections and to improve treatment strategies.


2020 ◽  
Vol 141 ◽  
pp. 1-14 ◽  
Author(s):  
HH Mahboub ◽  
YH Tartor

This study investigated the antifungal activity of 5 essential oils (EOs) towards yeasts recovered from diseased fishes; and focused on the efficacy of one EO (carvacrol) on growth performance, non-specific immunity, and disease resistance of Nile tilapia Oreochromis niloticus against Cryptococcus uniguttulatus challenge. Thymoquinone, thymol, carvacrol, eugenol, and cinnamon were first tested in vitro against 20 clinical yeast strains in comparison with antifungal drugs (fluconazole, ketoconazole, itraconazole, amphotericin B, nystatin, and clotrimazole) using disc diffusion and broth microdilution methods. For the in vivo challenge, fish (n = 150) were divided into 5 groups (carvacrol prophylaxis, carvacrol treatment, itraconazole treatment, unchallenged control, and positive control; 30 fish group-1) with 3 replicates. Phagocytic activity, reactive oxygen species production, reactive nitrogen species production, myeloperoxidase, lysozyme activity, and total immunoglobulins were tested before and after challenge. Relative percent survival (RPS) and mortality percent were determined as indicators for functional immunity. EOs displayed divergent degrees of antifungal activity, and carvacrol was the most effective against the tested yeasts. The dietary additive of carvacrol significantly enhanced growth performance, all immunological parameters, and the RPS values (90%) compared to other treatments. This unique experimental model indicates that carvacrol seems promising not only for enhancing immunity and promoting fish growth, but also for controlling emerging fungal infections. Future studies should investigate different concentrations of carvacrol as well as its antifungal activity in different fish species.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2401
Author(s):  
Gaspar Banfalvi

Background: Gentamicin is a broad-spectrum aminoglycoside antibiotic produced by Micromonospora purpurea bacteria, effective against Gram-negative bacterial infections. Major fractions of the gentamicin complex (C1, C1a, C2, C2a) possess weak antifungal activity and one of the minor components (A, A1–A4, B, B1, X), gentamicin B1 was found to be a strong antifungal agent. Methods: This work uses in vitro and in vivo dilution methods to compare the antifusarial, antiaspergillic and anticryptococcal effects of gentamicin derivatives and structurally-related congeners. Results: The in vitro antifusarial activity of gentamicin B1 (minimum inhibitory concentration (MIC) 0.4 μg/mL) and structurally-related compounds (MIC 0.8–12.5 μg/mL) suggests that the purpuroseamine ring substituents are responsible for the specific antimycotic effect. The functional groups of the garoseamine and 2-deoxystreptamine rings of gentamicin derivatives are identical in gentamicin compounds and are unlikely to exert a significant antifungal effect. Among soil dermatophytes, Microsporum gypseum was more susceptible to gentamicin B1 (MIC 3.1 µg/mL) than Trichophyton gypseum (MIC 25 µg/mL). The in vitro antifungal effect of gentamicin B1 against plant pathogenic fungi was comparable to primary antifungal agents. Conclusion: Gentamicin is already in medical use. In vitro and preclinical in vivo synergisms of gentamicin B1 with amphotericin B suggest immediate clinical trials starting with subtoxic doses.


2020 ◽  
Vol 16 (2) ◽  
pp. 55-58
Author(s):  
Falah Hasan Obayes AL-Khikani

Vaginitis is a common problem for women regarding a worldwide health challenge with many side effects. Vaginitis is among the most visiting to gynecology clinics. About 75% of all reproductive women had at least one fungal vaginitis infection in their life, and more than 40% will have two or more than two.  Candida spp is the most prevalent in fungal vaginitis, while reports for unusual fungi were observed as mucor spp. Amphotericin B (AmB) belongs to the polyene group has a wide spectrum in vitro and in vivo antifungal activity. All of the known available formulas of AmB are administrated via intravenous injection to treat severe systemic fungal infections, while the development of the topical formula of AmB is still under preliminary development including topical vaginal AmB. Due to the revealing of antimicrobial-resistant fungi in recent years, this study explains the role of topical AmB in treating refractory fungi vaginitis that may not a response to other drugs reported in many cases that may help researchers to develop new effective formula of AmB regarding fungal vaginitis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carolina Medeiros de Almeida Maia ◽  
Silvana Pasetto ◽  
Cassiano Francisco Weege Nonaka ◽  
Edja Maria Melo de Brito Costa ◽  
Ramiro Mendonça Murata

Oral candidiasis is one of the most common fungal infections in humans. Its incidence has increased widely, as well as the antifungal resistance, demanding for the search for novel antifungal therapeutic agents. Anadenanthera colubrina (Vell.) Brenan is a plant species that has been proven to possess pharmacological effects, including antifungal and anti-inflammatory activities. This study evaluated in vitro the effects of standardized A. colubrina extract on virulence factors of Candida albicans and its regulation on immune response through C. albicans-host interaction. Antifungal activity was evaluated by Broth Microdilution Method against reference Candida strains (C. albicans, C. glabrata, C. tropicalis; C. dubliniensis). Anti-biofilm effect was performed on C. albicans mature biofilm and quantified by CFU/mL/g of biofilm dry weight. Proleotlytic enzymatic activities of proteinase and phospholipase were assessed by Azocasein and Phosphatidylcholine assays, respectively. Cytotoxicity effect was determined by Cell Titer Blue Viability Assay on Human Gingival Fibroblasts. Co-cultured model was used to analyze C. albicans coexisting with HGF by Scanning Electron Microscopy and fluorescence microscopies; gene expression was assessed by RT-PCR of C. albicans enzymes (SAP-1, PLB-1) and of host inflammatory cytokines (IL-6, IL-8, IL-1β, IL-10). Cytokines secretion was analysed by Luminex. The extract presented antifungal effect with MIC<15.62 μg/ml against Candida strains. Biofilm and proteolytic activity were significant reduced at 312.4 μg/ml (20 × 15.62 μg/ml) extract concentration. Cell viability was maintained higher than 70% in concentrations up to 250 μg/ml (LD50 = 423.3 μg/ml). Co-culture microscopies demonstrated a substantial decreased in C. albicans growth and minimal toxicity against host cells. Gene expressions of SAP-1/PLB-1 were significantly down-regulated and host immune response was modulated by a significant decreased on IL-6 and IL-8 cytokines secretion. A. colubrina had antifungal activity on Candida strains, antibiofilm, and anti-proteolytic enzyme effects against C. albicans. Presented low cytotoxicity to the host cells and modulatory effects on the host immune response.


Author(s):  
Abdelbagi Alfadil ◽  
Hamoud A. Alsamhan ◽  
Ahmed S. Ali ◽  
Huda M. Alkreathy ◽  
Mohammad W. Alrabia ◽  
...  

Aims: To explore the antifungal activity of 2,3-dimethylquinoxaline. Study Design: A preclinical study of a compound against 10 fungal species. Backgrounds: Severe fungal infections cause significant clinical problem and need more effort to search for new antifungals. Methodology: We evaluated the susceptibility of 2,3-dimethylquinoxaline in vitro against a wide range of pathogenic fungi, including six Candida species, two Aspergillus species, one Cryptococcus species, and one Trichophyton species. Also, we evaluated the susceptibility of 2,3-dimethylquinoxaline in vivo against oral candidiasis using a mice model. Results: The highest score of the minimum inhibitory concentration was 9 µg/ml against Cryptococcus neoformans. While, the lowest score was 1125 µg/ml against Candida tropicalis. The oral candidiasis in a mouse model was resolved using 2,3-dimethylquinoxaline 1% gel. Conclusion: The 2,3-Dimethyquinoxaline has interesting antifungal activity. Quinoxalines in general need to be further developed as a promising antifungal candidate.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document