scholarly journals Determination of emergency roads to emergency accommodation using loss analysis results

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sajad Ganjehi ◽  
Khadijeh Norouzi Khatiri

AbstractTeh present study aims to identify proper places to build temporary accommodation for people and accessible roads using damage analysis results during a probable earthquake. Teh HAZUS damage estimation method, which is one of teh most common ones currently used in teh world, was used in dis study. Teh influential factors in locating teh temporary accommodation in Shiraz were studied by using damage results, AHP model, and Expert Choice software. Then, map for temporary accommodation was prepared. By integrating layers, teh ultimate map of optimal locating for temporary accommodation was presented. Subsequently, all teh parameters influencing teh safety of emergency evacuation and relief network were identified and teh impact rate of each one was determined based on experts’ opinions through AHP. Based on teh importance of each index, roads were weighed and coded. Then, teh optimal safe road for relief and emergency evacuation was proposed. Teh results suggested dat relief roads are different based on different indices and teh optimal road was obtained through overlapping teh data layers according to teh importance of each parameter. dis optimal road could provide maximum services in teh minimum time duration and subsequently create capacity building in urban crisis management.

2020 ◽  
Vol 9 (1) ◽  
pp. 170-181 ◽  
Author(s):  
Shangyong Zhang ◽  
Ruipeng Zhong ◽  
Ruoyu Hong ◽  
David Hui

AbstractThe surface activity of carbon black (CB) is an important factor affecting the reinforcement of rubber. The quantitative determination of the surface activity (surface free energy) of CB is of great significance. A simplified formula is obtained to determine the free energy of CB surface through theoretical analysis and mathematical derivation. The surface free energy for four kinds of industrial CBs were measured by inverse gas chromatography, and the influential factors were studied. The results showed that the aging time of the chromatographic column plays an important role in accurate measurement of the surface free energy of CB, in comparison with the influences from the inlet pressure and carrier gas flow rate of the chromatographic column filled with CB. Several kinds of industrial CB were treated at high temperature, and the surface free energy of CB had a significant increase. With the increase of surface free energy, the maximum torque was decreased significantly, the elongation at break tended to increase, the heat generation of vulcanizates was increased, and the wear resistance was decreased.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 581 ◽  
Author(s):  
Weilong Yang ◽  
Yue Hu ◽  
Cong Hu ◽  
Mei Yang

With the gradual expansion of high buildings and underground spaces, deep foundation pits have been widely used in these engineering projects, but if they are not well-designed, safety problems occur. Proper deep foundation pit design requires proper exit distribution. However, calculating an adequate number of exit distributions for evaluation is difficult due to the numerous influential factors existing in the deep foundation pit environment. To this end, this paper presents a prototype of a decision-making system that uses agent-based modeling to simulate deep foundation pit evacuation in the presence of collapse disaster. By modeling the collapse occurrence process and agent escape process, an agent-based evacuation model is built, and a modified simulation-based particle swarm optimization algorithm is used to solve the optimization problem of exit distribution. Extensive experiments are conducted to verify the system, and the results show that the system provides a feasible framework for deep foundation pit evacuation.


Author(s):  
Д. В. Васильковський ◽  
Н. А. Цимбал

Improvement process of designing new models of women's clothing by automating sketch design in conditions of small sewing enterprises. Analysis of computer graphics programs possibilities; determination of meaningful indicators for determining the suitability of existing software by expert estimation method; approbation of the study results in the conditions of designer workplace. There have been created templates of graphic images of different types of female figures, libraries of modern materials textures, which are most often used for women's clothing manufacture. There has been developed the method of new model sketches creation of women's clothes with the use of figure templates and libraries of materials. An approach is proposed that generalizes and simplifies the process of adaptation of universal computer programs of vector graphics with the needs of automated design of new clothing models There has been developed a methodical support for the use of the universal graphic editor Xara Designer Pro on the AWS of a designer of a small sewing enterprise.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ho-Nien Shou

This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF) method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF). As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.


1960 ◽  
Vol 40 (2) ◽  
pp. 225-234 ◽  
Author(s):  
J. W. Tanner ◽  
E. E. Gamble ◽  
W. E. Tossell

A comparative study was made in 1958 of the visual estimation and hand separation methods of determining botanical composition of two-component forage mixtures. The results indicated that there were positive significant correlations between the per cent legume values obtained by the two methods. The visual estimation method was less variable than the hand separation method and the precision per unit cost was greater. The differences between per cent legume values obtained by the two methods were influenced by the stage of maturity (medium or late hay) of the components and the cut (hay or aftermath). In this study, the difference was significant only in the medium aftermath cut.Individually, three observers showed some inconsistencies between estimates on the medium and late maturity groups and between the hay and aftermath cut. However, by averaging the three estimates to obtain a mean sample, these inconsistencies were minimized.Both methods were more precise in the aftermath pasture cut than in the hay. An additional observer increased precision of the visual estimate more than an additional replicate or sample. The greater precision resulting from additional replicates, samples, or observers increased at a decreasing rate. The number of replicates, samples, and observers required for specific degrees of precision and a specific cost were calculated.The experiment showed that the visual estimation method can be superior to the hand separation method as a means of determining botanical composition.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Chikayoshi Sumi

Recently, work in this group has focused on the lateral cosine modulation method (LCM) which can be used for next-generation ultrasound (US) echo imaging and tissue displacement vector/strain tensor measurements (blood, soft tissues, etc.). For instance, in US echo imaging, a high lateral spatial resolution as well as a high axial spatial resolution can be obtained, and in tissue displacement vector measurements, accurate measurements of lateral tissue displacements as well as of axial tissue displacements can be realized. For an optimal determination of an apodization function for the LCM method, the regularized, weighted minimum-norm least squares (WMNLSs) estimation method is presented in this study. For designed Gaussian-type point spread functions (PSFs) with lateral modulation as an example, the regularized WMNLS estimation in simulations yields better approximations of the designed PSFs having wider lateral bandwidths than a Fraunhofer approximation and a singular-value decomposition (SVD). The usefulness of the regularized WMNLS estimation for the determination of apodization functions is demonstrated.


Author(s):  
Kai Chen ◽  
Richard A. Foulds

The dependence of muscle force on muscle length gives rise to a “spring - like” behavior which has been shown to play an important role during movement. This study extended this concept and incorporated the influential factors of the mechanical behavior of the neural, muscular and skeletal system on the control of elbow movement. A significant question in motor control is determining how information about movement is used to modify control signals to achieve desired performance. One theory proposed and supported by Feldman et. is the equilibrium point hypothesis (EPH). In it the central nervous system (CNS) reacts to movement as a shift of the limb’s equilibrium posture. The EPH drastically simplified the requisite computations for multi-joint movements and mechanical interactions with complex dynamic objects in the context. Because the neuromuscular system is spring-like, the instantaneous difference between the arm’s actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex “inverse dynamic” of computing the torques at the joints. Moreover, this instantaneous difference serves as a potential source of movement control related to limb dynamics and associated movement-dependent torques when perturbations are added. In this paper, we have used an EPH model to examine changes to control signals for arm movements in the context of adding perturbations in format of forces or torques. The mechanical properties and reflex actions of muscles crossing the elbow joint were examined during a planned 1 radian voluntary elbow flexion movement. Brief unexpected torque/force pulses of identical magnitude and time duration (4.5 N flexion switching to 50 N extension within 120ms) were introduced at various points of a movement in randomly selected trials. Single perturbation was implemented in different trials during early, mid, stages of the movement by pre-programmed 6DOF robotic arm (MOOG FCS HapticMaster). Changes in movement trajectory induced by a torque/ force perturbation determined over the first 120 ms by a position prediction formulation, and then a modified and optimization K-B-I (stiffness-damping-inertia) model was fit to the responses for predicting both non-perturbed and perturbed movement of elbow. The stiffness and damping coefficients estimate during voluntary movements were compared to values recorded of different subjects during trials. A least square nonlinear optimization model was designed to help determine the optimized impedance a subject could generate, and the identified of adapted of K-B-I in perturbed upper limb movements confirmed our assumption.


Sign in / Sign up

Export Citation Format

Share Document