scholarly journals Effect of CT imaging on the accuracy of the finite element modelling in bone

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Emir Benca ◽  
Morteza Amini ◽  
Dieter H. Pahr

Abstract The finite element (FE) analysis is a highly promising tool to simulate the behaviour of bone. Skeletal FE models in clinical routine rely on the information about the geometry and bone mineral density distribution from quantitative computed tomography (CT) imaging systems. Several parameters in CT imaging have been reported to affect the accuracy of FE models. FE models of bone are exclusively developed in vitro under scanning conditions deviating from the clinical setting, resulting in variability of FE results (< 10%). Slice thickness and field of view had little effect on FE predicted bone behaviour (≤ 4%), while the reconstruction kernels showed to have a larger effect (≤ 20%). Due to large interscanner variations (≤ 20%), the translation from an experimental model into clinical reality is a critical step. Those variations are assumed to be mostly caused by different “black box” reconstruction kernels and the varying frequency of higher density voxels, representing cortical bone. Considering the low number of studies together with the significant effect of CT imaging on the finite element model outcome leading to high variability in the predicted behaviour, we propose further systematic research and validation studies, ideally preceding multicentre and longitudinal studies.

2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Nor Fazli Adull Manan ◽  
Jamaluddin Mahmud ◽  
Aidah Jumahat

This paper for the first time attempts to establish the biomechanical characteristics of bovine skin via experiment-theory integration and finite element simulation. 30 specimens prepared from fresh slaughtered bovine were uniaxially stretched in-vitro using tensile tests machine. The experimental raw data are then input into a Matlab programme, which quantified the hyperelastic parameters based on Ogden constitutive equation. It is found that the Ogden coefficient and exponent for bovine skin are μ = 0.017 MPa and α = 11.049 respectively. For comparison of results, the quantified Ogden parameters are then input into a simple but robust finite element model, which is developed to replicate the experimental setup and simulate the deformation of the bovine skin. Results from experiment-theory integration and finite element simulation are compared. It is found that the stress-stretch curves are close to one another. The results and finding prove that the current study is significant and has contributed to knowledge enhancement about the deformation behaviour of bovine skin.


2002 ◽  
Vol 124 (6) ◽  
pp. 734-741 ◽  
Author(s):  
Alexander I. Veress ◽  
Jeffrey A. Weiss ◽  
Grant T. Gullberg ◽  
D. Geoffrey Vince ◽  
Richard D. Rabbitt

Atherosclerotic plaque rupture is responsible for the majority of myocardial infarctions and acute coronary syndromes. Rupture is initiated by mechanical failure of the plaque cap, and thus study of the deformation of the plaque in the artery can elucidate the events that lead to myocardial infarction. Intravascular ultrasound (IVUS) provides high resolution in vitro and in vivo cross-sectional images of blood vessels. To extract the deformation field from sequences of IVUS images, a registration process must be performed to correlate material points between image pairs. The objective of this study was to determine the efficacy of an image registration technique termed Warping to determine strains in plaques and coronary arteries from paired IVUS images representing two different states of deformation. The Warping technique uses pointwise differences in pixel intensities between image pairs to generate a distributed body force that acts to deform a finite element model. The strain distribution estimated by image-based Warping showed excellent agreement with a known forward finite element solution, representing the gold standard, from which the displaced image was created. The Warping technique had a low sensitivity to changes in material parameters or material model and had a low dependency on the noise present in the images. The Warping analysis was also able to produce accurate strain distributions when the constitutive model used for the Warping analysis and the forward analysis was different. The results of this study demonstrate that Warping in conjunction with in vivo IVUS imaging will determine the change in the strain distribution resulting from physiological loading and may be useful as a diagnostic tool for predicting the likelihood of plaque rupture through the determination of the relative stiffness of the plaque constituents.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Meng Zhang ◽  
Jiazi Gao ◽  
Xu Huang ◽  
He Gong ◽  
Min Zhang ◽  
...  

Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2>0.7, P<0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2>0.6, P<0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA.


2019 ◽  
Vol 16 (03) ◽  
pp. 1842012 ◽  
Author(s):  
Zimo Zhu ◽  
Donna C. Jones ◽  
G. R. Liu ◽  
Sajjad Soleimani ◽  
Xu Huang ◽  
...  

Finite element (FE) analysis has been widely used to investigate bone responses to mechanical loading. Research in long bones has been straight forward because modeling of these bones requires only two material properties. Such an FE model may provide an adequate approximation of the anatomy for many cases. However, a more detailed model of skull bones is needed to accurately capture its complex structure of multiple bone pieces and the various mineral densities distributed throughout these bone pieces. Unfortunately, FE model development incorporating both complex geometries and anatomically accurate material properties is both computationally and labor intensive. In this study, a method is proposed to automatically segment micro-computed tomography ([Formula: see text]-CT) scan images of bone pieces to build an FE model of a full swine hemi-skull. Using the Digital Imaging and Communications in Medicine (DICOM) files from scanned bones, the complete geometry of each bone piece is recreated through seven customized processing algorithms. After assembling the bone pieces to form the skull, experimentally derived Young’s modulus values are correlated to grayscale values to produce a detailed FE model for accurate simulation. This detailed skull model can be used to predict strain/stress patterns in response to various loading regimes to facilitate research questions in fracture healing and growth, as well as bone tissue engineering and bone mineral density loss (e.g., osteoporosis).


2020 ◽  
Vol 11 (1) ◽  
pp. 20190123 ◽  
Author(s):  
Giulia Luraghi ◽  
Jose Felix Rodriguez Matas ◽  
Gabriele Dubini ◽  
Francesca Berti ◽  
Sara Bridio ◽  
...  

An acute ischaemic stroke appears when a blood clot blocks the blood flow in a cerebral artery. Intra-arterial thrombectomy, a mini-invasive procedure based on stent technology, is a mechanical available treatment to extract the clot and restore the blood circulation. After stent deployment, the clot, trapped in the stent struts, is pulled along with the stent towards a receiving catheter. Recent clinical trials have confirmed the effectiveness and safety of mechanical thrombectomy. However, the procedure requires further investigation. The aim of this study is the development of a numerical finite-element-based model of the thrombectomy procedure. In vitro thrombectomy tests are performed in different vessel geometries and one simulation for each test is carried out to verify the accuracy and reliability of the proposed numerical model. The results of the simulations confirm the efficacy of the model to replicate all the experimental setups. Clot stress and strain fields from the numerical analysis, which vary depending on the geometric features of the vessel, could be used to evaluate the possible fragmentation of the clot during the procedure. The proposed in vitro / in silico comparison aims at assessing the applicability of the numerical model and at providing validation evidence for the specific in vivo thrombectomy outcomes prediction.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Timothy P. Ficklin ◽  
Andrew Davol ◽  
Stephen M. Klisch

Recently a cartilage growth finite element model (CGFEM) was developed to solve nonhomogeneous and time-dependent growth boundary-value problems (Davol et al., 2008, “A Nonlinear Finite Element Model of Cartilage Growth,” Biomech. Model. Mechanobiol., 7, pp. 295–307). The CGFEM allows distinct stress constitutive equations and growth laws for the major components of the solid matrix, collagens and proteoglycans. The objective of the current work was to simulate in vitro growth of articular cartilage explants in a steady-state permeation bioreactor in order to obtain results that aid experimental design. The steady-state permeation protocol induces different types of mechanical stimuli. When the specimen is initially homogeneous, it directly induces homogeneous permeation velocities and indirectly induces nonhomogeneous solid matrix shear stresses; consequently, the steady-state permeation protocol is a good candidate for exploring two competing hypotheses for the growth laws. The analysis protocols were implemented through the alternating interaction of the two CGFEM components: poroelastic finite element analysis (FEA) using ABAQUS and a finite element growth routine using MATLAB. The CGFEM simulated 12 days of growth for immature bovine articular cartilage explants subjected to two competing hypotheses for the growth laws: one that is triggered by permeation velocity and the other by maximum shear stress. The results provide predictions for geometric, biomechanical, and biochemical parameters of grown tissue specimens that may be experimentally measured and, consequently, suggest key biomechanical measures to analyze as pilot experiments are performed. The combined approach of CGFEM analysis and pilot experiments may lead to the refinement of actual experimental protocols and a better understanding of in vitro growth of articular cartilage.


Sign in / Sign up

Export Citation Format

Share Document