scholarly journals Screening and identification of novel halotolerant bacterial strains and assessment for insoluble phosphate solubilization and IAA production

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Gajendra Joshi ◽  
Vikash Kumar ◽  
Sunil Kumar Brahmachari

Abstract Background Salinity is typical in seashore soils due to the interruption of seawater in the groundwater. Soil microbes of coastal regions play a vital role in increasing plant yields. Microbe-plant associated growth and its wide spectrum with soil environment remain one of the prime factors in agriculture for field application. Making such, in this study, very precise research work is outlined to serve microbial-based solution for solubilizing the insoluble phosphate under various harsh environmental conditions and IAA production. Salt-affected soils along the coast of Bay of Bengal, Sundarbans, India, have been collected. Results A total of five isolates effectively solubilize the considerable amount of Tri-calcium phosphate {TCP, (Ca3PO4)2} ranging from 50.67 to 116.66 P2O5 parts per million (ppm) under optimized conditions, i.e., pH 8.0, 5 to 10% saline and 30 °C temperature. Out of five, three produced Indole Acetic Acid (IAA) ranging from 0.054 to 0.183 (g l−1). Identification of isolates has been carried out by morphology, biochemical characterization and 16S rDNA sequencing. Among the sequenced isolates, 1 belonged to Firmicutes, 3 were Proteobacteria and 1 was Actinobacteria. Conclusion This is the first report which shows the presence of phosphate solubilizing activity by the member of the genus Halomonas and Halobacillus from the study site. These stress-tolerant bacteria will deliver reliable and cost-effective methods to overcome the existing scenario of saline-affected agriculture.

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1480
Author(s):  
Rayan Y. Booq ◽  
Essam A. Tawfik ◽  
Haya A. Alfassam ◽  
Ahmed J. Alfahad ◽  
Essam J. Alyamani

Artificial intelligence (AI) is a new technology that has been employed to screen and discover new drugs. Using AI, an anti-diabetic treatment (Halicin) was nominated and proven to have a unique antibacterial activity against several harmful bacterial strains, including multidrug-resistant bacteria. This study aims to explore the antibacterial effect of halicin and microbial susceptibility using the zone of inhibition and the minimum inhibition concentration (MIC) values while assessing the stability of stored halicin over a period of time with cost-effective and straightforward methods. Linear regression graphs were constructed, and the correlation coefficient was calculated. The new antibacterial agent was able to inhibit all tested gram-positive and gram-negative bacterial strains, but in different concentrations—including the A. baumannii multidrug-resistant (MDR) isolate. The MIC of halicin was found to be 16 μg/mL for S. aureus (ATCC BAA-977), 32 μg/mL for E. coli (ATCC 25922), 128 μg/mL for A. baumannii (ATCC BAA-747), and 256 μg/mL for MDR A. baumannii. Upon storage, the MICs were increased, suggesting instability of the drug after approximately a week of storage at 4 °C. MICs and zones of inhibition were found to be high (R = 0.90 to 0.98), suggesting that halicin has a promising antimicrobial activity and may be used as a wide-spectrum antibacterial drug. However, the drug’s pharmacokinetics have not been investigated, and further elucidation is needed.


Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Ram Singh ◽  
Rupinder Singh ◽  
Mukesh Yadav

AbstractMicrobial inulinases are an important class of industrial enzymes, which are used for the production of fructooligosaccharides and high-fructose syrup. Endoinulinase producing bacterial strains were isolated from soil samples taken from the vicinity of Asparagus sp. root tubers. All the bacterial strains were screened for inulinase activity. The primary screening was carried out based on hydrolytic zone on agar plates containing inulin-based medium and Lugol’s iodine solution. Thus 30 inulinase producing bacterial strains were isolated. Out of 30 strains, 5 bacterial strains were found endoinulolytic, whereas 25 were exoinulolytic on the basis of action pattern of the enzyme. In tertiary screening, the bacterial isolate AS-08 was found to be most efficient for inulinase activity. Morphological, biochemical and physiological characteristics of the bacterial isolate AS-08 confirmed it as Bacillus sp. Furthermore, species-specific identification by 16S rDNA sequencing and phylogenetic analysis revealed the isolate as Bacillus safensis. Bacillus pumilus SH-B30 was found to be the nearest homolog. The strain showed maximum inulinase activity (12.56 U/mL) after 20 h of incubation at 37°C.


1987 ◽  
Vol 26 (04) ◽  
pp. 189-194
Author(s):  
S. S. El-Gamal

SummaryModern information technology offers new opportunities for the storage and manipulation of hospital information. A computer-based hospital information system, dedicated to urology and nephrology, was designed and developed in our center. It involves in principle the employment of a program that allows the analysis of non-restricted, non-codified texts for the retrieval and processing of clinical data and its operation by non-computer-specialized hospital staff.This Hospital Information System now plays a vital role in the efficient provision of a good quality service and is used in daily routine and research work in this hospital. This paper describes this specialized Hospital Information System.


2012 ◽  
Vol 3 (2) ◽  
pp. 253-255
Author(s):  
Raman Brar

Image segmentation plays a vital role in several medical imaging programs by assisting the delineation of physiological structures along with other parts. The objective of this research work is to segmentize human lung MRI (Medical resonance Imaging) images for early detection of cancer.Watershed Transform Technique is implemented as the Segmentation method in this work. Some comparative experiments using both directly applied watershed algorithm and after marking foreground and computed background segmentation methods show the improved lung segmentation accuracy in some image cases.


2020 ◽  
Author(s):  
Anurag Sohane ◽  
Ravinder Agarwal

Abstract Various simulation type tools and conventional algorithms are being used to determine knee muscle forces of human during dynamic movement. These all may be good for clinical uses, but have some drawbacks, such as higher computational times, muscle redundancy and less cost-effective solution. Recently, there has been an interest to develop supervised learning-based prediction model for the computationally demanding process. The present research work is used to develop a cost-effective and efficient machine learning (ML) based models to predict knee muscle force for clinical interventions for the given input parameter like height, mass and angle. A dataset of 500 human musculoskeletal, have been trained and tested using four different ML models to predict knee muscle force. This dataset has obtained from anybody modeling software using AnyPyTools, where human musculoskeletal has been utilized to perform squatting movement during inverse dynamic analysis. The result based on the datasets predicts that the random forest ML model outperforms than the other selected models: neural network, generalized linear model, decision tree in terms of mean square error (MSE), coefficient of determination (R2), and Correlation (r). The MSE of predicted vs actual muscle forces obtained from the random forest model for Biceps Femoris, Rectus Femoris, Vastus Medialis, Vastus Lateralis are 19.92, 9.06, 5.97, 5.46, Correlation are 0.94, 0.92, 0.92, 0.94 and R2 are 0.88, 0.84, 0.84 and 0.89 for the test dataset, respectively.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Rita Abou Nader ◽  
Rawan Mackieh ◽  
Rim Wehbe ◽  
Dany El El Obeid ◽  
Jean Marc Sabatier ◽  
...  

Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.


Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 27
Author(s):  
Rim Tinhinen Maougal ◽  
Maya Kechid ◽  
Chaima Ladjabi ◽  
Abdelhamid Djekoun

Rhizobacteria play an important role in maintaining soil balance. Among these bacteria, there are those taht have shown their ability to promote the growth of plants, known as Plant Growth Promoting Rhizobacteria (PGPR). In our work, we are interested in characterizing 110 bacterial strains isolated in the field in the region of Ben Badis (Constantine Algeria) from 5 varieties of faba bean. Phenotypic and biochemical characterization showed that most of the isolates are cream-colored, slightly raised, flat and opaque, Gram−, catalase+ and oxidase−, and Bacillus form. PCA analysis allowed us to select 40 isolates with a high degree of variability to continue our work. The results obtained have directed us towards different taxonomic groups (rhizobium, Pseudomonas, Bacillus etc.). The evaluation of the PGPR potential of bacteria (phytostimulation, biofertilization and biocontrol), showed that 100% of bacteria are able to produce auxin at different concentrations, with the highest concentration (177.77 µg/mL) for the isolate 6, and that more than 50% of isolates are capable of producing nitrogen, ammonia and phytate mineralization. These PGPR traits have a direct effect on plant growth of five varieties of the faba bean and can be used to select the best performing bacteria for inoculation tests.


2017 ◽  
Vol 867 ◽  
pp. 290-293 ◽  
Author(s):  
Kandasamy Jayakrishna ◽  
P. Sanjay Guar ◽  
R. Senthilkumar ◽  
Nagarajan Aathis

Development of prototypes draws major focus in contemporary manufacturing organisations. Sustainability analysis and comparison of the prototype manufacturing process plays a vital role in deciding the sustainability level of the product. Sustainability of prototyping depends on model building material and model building process. In this paper based on the customer requirements, Environmental Conscious Quality Function Deployment (ECQFD) was carried out. Increased lives, strength, reduced toxicity of material with biodegradability were the major outputs of ECQFD. Cambridge Engineering Selector (CES) and Grey Relation Analysis (GRA) were used for material selection. Wood, ABS, Poly Lactic acid (PLA) and Lead were selected as cost efficient materials for the case product. A CAD model of the case product was developed and subjected to Life Cycle Analysis (LCA) using solid works sustainability express for the above materials. Prototypes of the case products where produced by wood carving, casting, CNC Milling and 3D printing by considering all input parameters required across each process. LCA was conducted using GaBi for the above process and the results were compared. From this study, it was observed that the case product developed using PLA with 3D printing technology had very less impact on environment and is considered as the best and cost effective prototyping method.


2021 ◽  
Author(s):  
Hong Chang ◽  
De Qiang Yi ◽  
Yang Lv ◽  
Ming Zhao ◽  
Peng Liang Cao ◽  
...  

Abstract Effective stage-to-stage isolation is typically accomplished by setting a bridge plug in a properly cemented casing between stages. This isolation plays a vital role in a horizontal well multistage fracturing completion. Failure of isolation not only impacts the well productivity but also wastes fracturing materials. The challenges isolation failure poses for stimulation effectiveness include both detection and remediation. First, there has been historically no reliable and cost-effective solution to detect stage-to-stage isolation onsite. One may only start to realize this problem when inconsistent production is observed. Second, existing remedial actions are seldom satisfying in case of an isolation failure. Most commonly, a new plug is set to replace the failed one. However, because the perforation clusters of an unstimulated stage may create irregularities in well inside diameter (ID) (e.g., casing deformation or burr), there is a risk that the plug will be damaged or become stuck when it passes the perforation area. Also, when the plug passes a perforation cluster, the perforations start to take in the pump-down fluid, which can increase the difficulty of the pump-down job. A novel remedial action uses high-frequency pressure monitoring (HFPM) and diversion to solve both challenges. The stage isolation integrity is evaluated in quasi-real time by analyzing the water hammer after the pump shutdown. In the case of a plug failure, large-particle fracture diversion materials and techniques can establish temporary wellbore isolation through a quick and simple delivery process. To close the cycle, the effect of the diversion can be evaluated by HFPM, which can reveal the fluid entry point of the treatment fluid after diversion. The technique was applied to two cases in Ordos basin in which wellbore isolation failure interrupted the operation. The problem identification, development of the solution workflow, and observation from treatment analysis are discussed. In both cases, the stage-to-stage isolation was recovered, and the drilled sand body was successfully stimulated without involving costly and time-consuming well intervention. The stimulation operation of the entire well was successfully resumed in a timely manner.


Author(s):  
Mohsina Abed ◽  
Sara Yousuf

Meropenem is a new Carbapenem antibacterial agent with wide spectrum of activity for intravenous administration. It is synthetic derivative of Thienamycin. Three analogues of Meropenem are evaluated and active against 18 bacterial strains. Meropenem causes rapid bacterial cell death by covalently binding to penicillin binding proteins (PBS). Structural modification at C-2 position, produced double promoiety prodrug of Meropenem and increases bioavailability of oral administration. Other forms of drug such as liposome and nanoparticles are also available with enhanced absorption. 14C labelled Meropenem prepared from 14C Dimethylamine hydrochloride is used for the analysis of M. tuberculosis transpeptidase. ICI213,689 is the only metabolite of Meropenem and it is inactive. Meropenem penetrates well into the body fluids and tissues including cerebrospinal fluid. Its bioavailability is 100% on intravenous administration. Hence it is used in the treatment of meningitis, febrile neutropenia, anthrax and various other skin and skin structure infections. Dosage reduction is required in patient with reduced renal function but not in hepatic impairment. Seizures, gastrointestinal haemorrhage are observed in patients. Vabmoere is the combination of Meropenem and Vaborbactam which is active against the Carbapenem resistant Enterobacteriacea. Meropenem is an effective broad-spectrum antibacterial drug for the treatment of wide range of infection including polymicrobial infection in both children and adult.


Sign in / Sign up

Export Citation Format

Share Document