scholarly journals Sustainable and invisible anti-counterfeiting inks based on waterborne polyurethane and upconversion nanoparticles for leather products

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jun Xiang ◽  
Jianxun Lin ◽  
Zhonghui Wang ◽  
Shenglin Zhou ◽  
Zhenya Wang ◽  
...  

Abstract Counterfeit leather products infringe the intellectual property rights of the business, cause enormous economic loss, and negatively influence the business enthusiasm for innovation. However, traditional anti-counterfeiting materials for leather products suffer from complicated fabrication procedures, photobleaching, and high volatile organic compound (VOC) emissions. Here, a sustainable and invisible anti-counterfeiting ink composed of waterborne polyurethane and water-dispersible lanthanide-doped upconversion nanoparticles (UCNPs) featuring ease of preparation, high photostability, non-toxicity, low VOC emissions, and strong adhesion strength for leather products is designed and synthesized. After decorating on the surface of leather products, the obtained patterns are invisible under normal light conditions. Upon irradiation at 808 nm, the invisible patterns can be observed by naked eyes due to the visible light emitted by 808 nm excited UCNPs. Our approach described here opens a new pathway to realize the long-term, stable anti-counterfeiting function of leather products. Graphical Abstract

Author(s):  
Zdeněk Jergl

The contribution refers to the problems of long-lasting emissions of VOC (volatile organic compounds) emitted from surface finishing furniture components. Furniture is one of the sources of VOC (volatile organic compounds) in living and working environment. By long-lasting affecting on a human body, higher emission concentrations of VOC in interior can cause health problems.Time is a significant factor influencing the number of VOC (volatile organic compounds) emitted from surface finishing furniture components. The number of long-term emissions was examined in particular phases of production of furniture components.The comparison was focused on a difference in surface finishing of furniture components with water-diluted materials and solvent lacquer materials.The compound of water-diluted materials and solvent lacquer materials has an effect of a quantity of emitted VOC.The quantitative and qualitative determination of VOC emissions from lacquer materials is the result of the carried out analyses.


Holzforschung ◽  
2005 ◽  
Vol 59 (5) ◽  
pp. 519-523 ◽  
Author(s):  
Mathias Makowski ◽  
Martin Ohlmeyer ◽  
Dietrich Meier

Abstract An oriented strand board (OSB) made of Scots pine (Pinus sylvestris L.) was tested for volatile organic compound (VOC) emissions 24 h after the hot-pressing process over a period of 2 months. The predominant emissions from the OSB were monoterpenes and aldehydes. Terpene emissions decreased continuously, whereas aldehyde concentrations initially increased and subsequently decayed. Aldehydes are formed by the autoxidative splitting of unsaturated fatty acids contained in the wood. Due to the delayed release of aldehydes, a comparison of different emission test results is only possible if age and storage conditions are clearly specified. For a reduction in VOC emissions from wood-based materials, wood properties, manufacturing process, and storage conditions have to be considered.


Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article deals with the issues related to the problem of ballistic design of the space system of remote sensing of the Earth on stable near-circular solar-synchronous orbits with long-term existence of spacecraft. We propose a rational method of maintaining a solar-synchronous orbit in given light conditions with prolonged active lifetime of space systems. In solving this problem, the total time of normal operation of the system for a given period of operation, during which the most favorable conditions for the use of spacecraft are provided on the main parts of orbits, is taken as a target function.


2021 ◽  
Vol 13 (6) ◽  
pp. 3364
Author(s):  
Amr Zeedan ◽  
Abdulaziz Barakeh ◽  
Khaled Al-Fakhroo ◽  
Farid Touati ◽  
Antonio S. P. Gonzales

Soiling losses of photovoltaic (PV) panels due to dust lead to a significant decrease in solar energy yield and result in economic losses; this hence poses critical challenges to the viability of PV in smart grid systems. In this paper, these losses are quantified under Qatar’s harsh environment. This quantification is based on experimental data from long-term measurements of various climatic parameters and the output power of PV panels located in Qatar University’s Solar facility in Doha, Qatar, using a customized measurement and monitoring setup. A data processing algorithm was deliberately developed and applied, which aimed to correlate output power to ambient dust density in the vicinity of PV panels. It was found that, without cleaning, soiling reduced the output power by 43% after six months of exposure to an average ambient dust density of 0.7 mg/m3. The power and economic loss that would result from this power reduction for Qatar’s ongoing solar PV projects has also been estimated. For example, for the Al-Kharasaah project power plant, similar soiling loss would result in about a 10% power decrease after six months for typical ranges of dust density in Qatar’s environment; this, in turn, would result in an 11,000 QAR/h financial loss. This would pose a pressing need to mitigate soiling effects in PV power plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 590
Author(s):  
Makiko Yamagami ◽  
Fumikazu Ikemori ◽  
Hironori Nakashima ◽  
Kunihiro Hisatsune ◽  
Kayo Ueda ◽  
...  

In Japan, various countermeasures have been undertaken to reduce the atmospheric concentration of fine particulate matter (PM2.5). We evaluated the extent to which these countermeasures were effective in reducing PM2.5 concentrations by analyzing the long-term concentration trends of the major components of PM2.5 and their emissions in Nagoya City. PM2.5 concentrations decreased by 53% over the 16-year period from fiscal years 2003 to 2018 in Nagoya City. Elemental carbon (EC) was the component of PM2.5 with the greatest decrease in concentration over the 16 years, decreasing by 4.3 μg/m3, followed by SO42− (3.0 μg/m3), organic carbon (OC) (2.0 μg/m3), NH4+ (1.6 μg/m3), and NO3− (1.3 μg/m3). The decrease in EC concentration was found to be caused largely by the effect of diesel emission control. OC concentrations decreased because of the effects of volatile organic compound (VOC) emission regulations for stationary sources and reductions in VOCs emitted by vehicles and construction machinery. NO3− concentrations decreased alongside decreased contributions from vehicles, construction machinery, and stationary sources, in descending order of the magnitude of decrease. Although these findings identify some source control measures that have been effective in reducing PM2.5, they also reveal the ineffectiveness of some recent countermeasures for various components, such as those targeting OC concentrations.


2021 ◽  
Vol 13 (12) ◽  
pp. 6570
Author(s):  
Asma Akter Parlin ◽  
Monami Kondo ◽  
Noriaki Watanabe ◽  
Kengo Nakamura ◽  
Mizuki Yamada ◽  
...  

The quantitative understanding of the transport behavior of volatile organic compounds (VOCs) in near-surface soils is highly important in light of the potential impacts of soil VOC emissions on the air quality and climate. Previous studies have suggested that temperature changes affect the transport behavior; however, the effects are not well understood. Indeed, much larger changes in the VOC flux under in situ dynamic temperatures than those expected from the temperature dependence of the diffusion coefficients of VOCs in the air have been suggested but rarely investigated experimentally. Here, we present the results of a set of experiments on the upward vertical vapor-phase diffusive transport of benzene and trichloroethylene (TCE) in sandy soils with water contents ranging from an air-dried value to 10 wt% during sinusoidal temperature variation between 20 and 30 °C. In all experiments, the flux from the soil surface was correlated with the temperature, as expected. However, the changes in flux under wet conditions were unexpectedly large and increased with increasing water content; they were also larger for TCE, the volatility of which depended more strongly on the temperature. Additionally, the larger flux changes were accompanied by a recently discovered water-induced inverse correlation between temperature and flux into the overlying soil. These results demonstrated that the flux changes of VOCs under dynamic temperatures could be increased by volatilization-dissolution interactions of VOCs with water. Future extensive studies on this newly discovered phenomenon would contribute to a better understanding of the impacts of soil VOC emissions on the air quality and climate.


2016 ◽  
Vol 22 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Gábor Steinbach ◽  
Radek Kaňa

AbstractPhotosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (throughTime Controlleroffered by Olympus orExperiment Designeroffered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with theCell⊕Findersoftware was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) theCell⊕Findersoftware with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser.Cell⊕Findercan be downloaded fromhttp://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity inSynechocystissp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.


Sign in / Sign up

Export Citation Format

Share Document