On: “Long‐wave elastic anisotropy in transversely isotropic media” by James G. Berryman (GEOPHYSICS, May 1979, p. 896–917).

Geophysics ◽  
1980 ◽  
Vol 45 (5) ◽  
pp. 977-980
Author(s):  
K. Helbig

Berryman shows elegantly that the “inequality [Formula: see text] is true for any horizontally stratified, homogeneous material whose constituent layers are isotropic…” However, the final clause of this sentence “…, i.e., any homogeneous, transversely isotropic material,” is, if taken at face value, misleading. It is clear from the proof in the section “A fundamental inequality” that this statement is only shown to hold for lamellated media with isotropic lamellae, and that Berryman chooses arbitrarily and without any warning the phrase homogeneous, transversely isotropic to stand as a synonym for what Backus (1962) painstakingly describes as “smoothed, transversely isotropic, long‐wave equivalent (STILWE).” In view of the fact that even within the context of exploration seismics transverse isotropy can be due to causes other than horizontal stratification with isotropic constituents (e.g., schists can be intrinsically anisotropic, anisotropy might be due to preferential orientation of sandgrains or joints), I believe this choice to be unfortunate. It leads the unsuspecting reader to assume a wider applicability of the fundamental inequality than Berryman really intends to claim, and thus makes it unnecessarily difficult to understand this significant contribution.

Geophysics ◽  
1979 ◽  
Vol 44 (5) ◽  
pp. 896-917 ◽  
Author(s):  
James G. Berryman

Compressional waves in horizontally layered media exhibit very weak long‐wave anisotropy for short offset seismic data within the physically relevant range of parameters. Shear waves have much stronger anisotropic behavior. Our results generalize the analogous results of Krey and Helbig (1956) in several respects: (1) The inequality [Formula: see text] derived by Postma (1955) for periodic isotropic, two‐layered media is shown to be valid for any homogeneous, transversely isotropic medium; (2) a general perturbation scheme for analyzing the angular dependence of the phase velocity is formulated and readily yields Krey and Helbig’s results in limiting cases; and (3) the effects of relaxing the assumption of constant Poisson’s ratio σ are considered. The phase and group velocities for all three modes of elastic wave propagation are illustrated for typical layered media with (1) one‐quarter limestone and three‐quarters sandstone, (2) half‐limestone and half‐sandstone, and (3) three‐quarters limestone and one‐quarter sandstone. It is concluded that anisotropic effects are greatest in areas where the layering is quite thin (10–50 ft), so that the wavelengths of the seismic signal are greater than the layer thickness and the layers are of alternately high‐ and low‐velocity materials.


Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 336-338 ◽  
Author(s):  
Felix M. Lyakhovitskiy

Berryman and Levin made an assumption about constancy or limited variations of Poisson’s ratio in the thin layers, in their analyses of elastic anisotropy in thin‐layered media. Berryman states (p. 913): “Rare cases can occur with large variations in Poisson’s ratio.” However, on p. 911 Berryman does point out (with reference to Benzing) that range of variations of the parameter γ = VS/VP from 0.45 to 0.65 is typical of rocks. That corresponds to a range of variations of Poisson’s ratio of 0.373 to 0.134 (i.e., almost three times as much).


1969 ◽  
Vol 59 (1) ◽  
pp. 59-72
Author(s):  
Robert S. Crosson ◽  
Nikolas I. Christensen

Abstract Several recent investigations suggest that portions of the Earth's upper mantle behave anisotropically to seismic wave propagation. Since several types of anisotropy can produce azimuthal variations in Pn velocities, it is of particular geophysical interest to provide a framework for the recognition of the form or forms of anisotropy most likely to be manifest in the upper mantle. In this paper upper mantle material is assumed to possess the elastic properties of transversely isotropic media. Equations are presented which relate azimuthal variations in Pn velocities to the direction and angle of tilt of the symmetry axis of a transversely isotropic upper mantle. It is shown that the velocity data of Raitt and Shor taken near the Mendocino and Molokai fracture zones can be adequately explained by the assumption of transverse isotropy with a nearly horizontal symmetry axis.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1855-1866 ◽  
Author(s):  
Jack K. Cohen

In their studies of transversely isotropic media with a vertical symmetry axis (VTI media), Alkhalifah and Tsvankin observed that, to a high numerical accuracy, the normal moveout (NMO) velocity for dipping reflectors as a function of ray parameter p depends mainly on just two parameters, each of which can be determined from surface P‐wave observations. They substantiated this result by using the weak‐anisotropy approximation and exploited it to develop a time‐domain processing sequence that takes into account vertical transverse isotropy. In this study, the two‐parameter Alkhalifah‐Tsvankin result was further examined analytically. It was found that although there is (as these authors already observed) some dependence on the remaining parameters of the problem, this dependence is weak, especially in the practically important regimes of weak to moderately strong transverse isotropy and small ray parameter. In each of these regimes, an analytic solution is derived for the anisotropy parameter η required for time‐domain P‐wave imaging in VTI media. In the case of elliptical anisotropy (η = 0), NMO velocity expressed through p is fully controlled just by the zero‐dip NMO velocity—one of the Alkhalifah‐ Tsvankin parameters. The two‐parameter representation of NMO velocity also was shown to be exact in another limit—that of the zero shear‐wave vertical velociy. The analytic results derived here are based on new representations for both the P‐wave phase velocity and normal moveout velocity in terms of the ray parameter, with explicit expressions given for the cases of vanishing onaxis shear speed, weak to moderate transverse isotropy, and small to moderate ray parameter. Using these formulas, I have rederived and, in some cases, extended in a uniform manner various results of Tsvankin, Alkhalifah, and others. Examples include second‐order expansions in the anisotropy parameters for both the P‐wave phase‐velocity function and NMO‐velocity function, as well as expansions in powers of the ray parameter for both of these functions. I have checked these expansions against the corresponding exact functions for several choices of the anisotropy parameters.


Geophysics ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 564-567 ◽  
Author(s):  
J. Wright

Studies have shown that elastic properties of materials such as shale and chalk are anisotropic. With the increasing emphasis on extraction of lithology and fluid content from changes in reflection amplitude with shot‐to‐group offset, one needs to know the effects of anisotropy on reflectivity. Since anisotropy means that velocity depends upon the direction of propagation, this angular dependence of velocity is expected to influence reflectivity changes with offset. These effects might be particularly evident in deltaic sand‐shale sequences since measurements have shown that the P-wave velocity of shales in the horizontal direction can be 20 percent higher than the vertical P-wave velocity. To investigate this behavior, a computer program was written to find the P- and S-wave reflectivities at an interface between two transversely isotropic media with the axis of symmetry perpendicular to the interface. Models for shale‐chalk and shale‐sand P-wave reflectivities were analyzed.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1654-1664 ◽  
Author(s):  
N. C. Banik

An interesting physical meaning is presented for the anisotropy parameter δ, previously introduced by Thomsen to describe weak anisotropy in transversely isotropic media. Roughly, δ is the difference between the P-wave and SV-wave anisotropies of the medium. The observed systematic depth errors in the North Sea are reexamined in view of the new interpretation of the moveout velocity through δ. The changes in δ at an interface adequately describe the effects of transverse isotropy on the P-wave reflection amplitude, The reflection coefficient expression is linearized in terms of changes in elastic parameters. The linearized expression clearly shows that it is the variation of δ at the interface that gives the anisotropic effects at small incidence angles. Thus, δ effectively describes both the moveout velocity and the reflection amplitude variation, two very important pieces of information in reflection seismic prospecting, in the presence of transverse isotropy.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 919-933 ◽  
Author(s):  
Michael A. Schoenberg ◽  
Maarten V. de Hoop

To decouple qP and qSV sheets of the slowness surface of a transversely isotropic (TI) medium, a sequence of rational approximations to the solution of the dispersion relation of a TI medium is introduced. Originally conceived to allow isotropic P-wave processing schemes to be generalized to encompass the case of qP-waves in transverse isotropy, the sequence of approximations was found to be applicable to qSV-wave processing as well, although a higher order of approximation is necessary for qSV-waves than for qP-waves to yield the same accuracy. The zeroth‐order approximation, about which all other approximations are taken, is that of elliptical TI, which contains the correct values of slowness and its derivative along and perpendicular to the medium’s axis of symmetry. Successive orders of approximation yield the correct values of successive orders of derivatives in these directions, thereby forcing the approximation into increasingly better fit at the intervening oblique angles. Practically, the first‐order approximation for qP-wave propagation and the second‐order approximation for qSV-wave propagation yield sufficiently accurate results for the typical transverse isotropy found in geological settings. After only slight modification to existing programs, the rational approximation allows for ray tracing, (f-k) domain migration, and split‐step Fourier migration in TI media—with little more difficulty than that encountered presently with such algorithms in isotropic media.


Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1921-1924 ◽  
Author(s):  
Young‐Fo Chang ◽  
Chih‐Hsiung Chang

Much of the earth’s crust appears to have some degree of elastic anisotropy (Crampin, 1981; Crampin and Lovell, 1991; Helbig, 1993). The phenomena of elastic wave propagation in anisotropic media are more complex than those in isotropic media. Shear‐wave propagation in an orthorhombic physical model is most complex when the direction of the wave is close to the neighborhood of the cusp on the group velocity surfaces (Brown et al., 1991). The first identification of singularities in wave propagation through sedimentary basins occurred in the examination of shear‐wave splitting in multioffset vertical seismic profiles (VSPs) at a borehole site in the Paris Basin (Bush and Crampin, 1991), where large variations in shear‐wave polarizations in propagation directions close to point singularities were observed. Computation of synthetic seismograms for layer sequences showed that the shear‐wave polarizations and amplitudes were irregular near point singularities (Crampin, 1991).


Geophysics ◽  
1994 ◽  
Vol 59 (10) ◽  
pp. 1605-1612 ◽  
Author(s):  
Björn E. Rommel

Many real rocks and sediments relevant to seismic exploration can be described by elastic, transversely isotropic media. The properties of plane waves propagating in a transversely isotropic medium can be given in an analytically exact form. Here the polarization is recast into a comprehensive form that includes Daley and Hron’s normalization and Helbig’s full range of elastic constants. But these formulas are rather lengthy and do not easily reveal the features caused by anisotropy. Hence Thomsen suggested an approximation scheme for weak transverse isotropy. His derivation of the approximate polarization, however, is based on a property that is not suitable to measure small differences between an isotropic and a weakly transversely isotropic medium. Therefore the approximation of the polarization is recast. The corrected approximation does show a dependence on weak transverse isotropy. This feature can be viewed as an additional rotation of the polarization with respect to the wavenormal. It depends on the anisotropy as well as the inverse velocity ratio. An approximate condition of pure polarization, which occurs in certain directions, is also obtained. The corrected approximation results in a better match of the approximate polarization with the exact one, providing the assumption of weak transverse isotropy is met. When comparing the additional rotation with the deviation of the (observable) ray direction from the wavenormal, the qSV‐wave indicates transverse isotropy most clearly.


Sign in / Sign up

Export Citation Format

Share Document