Effects of layered sediments on the guided wave in crosswell radar data

Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1698-1707 ◽  
Author(s):  
Karl J. Ellefsen

To understand how layered sediments affect the guided wave in crosswell radar data, traces are calculated for a model representing a sand layer between two clay layers. A guided wave propagates if the wavelengths in the sand layer are similar to the thickness of the sand layer. The amplitude of the guided wave but not its initial traveltime is affected by the thickness of the sand layer. In contrast, both the amplitude and the initial traveltime are affected by the locations of the transmitting and receiving antennas, the electrical conductivity of the sand layer, and the dielectric permittivity of the sand layer. This permittivity can be estimated from the initial traveltime. The effects of the layering on the waves in these calculated traces also are observed in field traces, which were collected in layered sediments.

Author(s):  
Shi Yan ◽  
Binbin He ◽  
Naizhi Zhao

Pipeline structure may generate damages during its service life due to the influence of environment or accidental loading. The damages need to be detected and repaired if they are severe enough to influence the transportation work. Non-destructive detection using smart materials combined with suitable diagonal algorithms are widely used in the field of structural health monitoring (SHM). Piezoelectric ceramics (such as Lead Zirconate Titanate, PZT) is one of the smart materials to be applied in the SHM due to the piezoelectric effect. So far, the PZT-based wave method is widely used for damage detection of structures, in particular, pipeline structures. A series of piezoelectric patches are bonded on the surface of the pipeline structure to monitor the damages such as local crack or effective area reduction due to corrosion by using diagonal waves. The damage of the pipeline structure can be detected by analysis of the received diagonal waves which peak value, phase, and arriving time can be deferent from the health ones. The response of the diagonal wave is not only correlated to the damage location through estimation of the arrival time of the wave peak, but also associated with the peak value of the wave for the reduction of wave energy as the guided wave passing through the damages. Therefore, the presence of damages in the pipeline structure can be detected by investigating the parameter change of the guided waves. The change of the wave parameters represents the attenuation, deflection and mode conversion of the waves due to the damages. In addition, the guided wave has the ability of quick detecting the damage of the pipeline structure and the simplicity of generating and receiving detection waves by using PZT patches. To verify the proposed method, an experiment is designed and tested by using a steel pipe bonded the PZT patches on the surface of it. The PZT patches consist of an array to estimate the location and level of the damage which is simulated by an artificial notch on the surface of the structure. The several locations and deep heights of the notches are considered during the test. A pair of the PZT patches are used at the same time as one is used as an actuator and the other as a sensor, respectively. A tone burst of 5 cycles of wave shape is used during the experiment. A wave generator is applied to create the proposed waves, and the waves are amplified by an amplifier to actuate the PZT patch to emit the diagonal waves with appropriately enough energy. Meanwhile, the other PZT patch is used as a sensor to receive the diagonal signals which contain the information of the damages for processing. For data processing, an index of root mean square deviation (RMSD) of the received data is used to estimate the damage level by compare of the data between the damaged and the health peak valves of the received signals. The time reversal method which aimed at increasing the efficiency of the detection is also used to detect the damage location by estimating the arrival time of the reflected wave passing with a certain velocity. The proposed method experimentally validates that it is effective for application in damage detection of pipeline structure.


Author(s):  
Sema Türkay ◽  
Adem Tataroğlu

AbstractRF magnetron sputtering was used to grow silicon nitride (Si3N4) thin film on GaAs substrate to form metal–oxide–semiconductor (MOS) capacitor. Complex dielectric permittivity (ε*), complex electric modulus (M*) and complex electrical conductivity (σ*) of the prepared Au/Si3N4/p-GaAs (MOS) capacitor were studied in detail. These parameters were calculated using admittance measurements performed in the range of 150 K-350 K and 50 kHz-1 MHz. It is found that the dielectric constant (ε′) and dielectric loss (ε″) value decrease with increasing frequency. However, as the temperature increases, the ε′ and ε″ increased. Ac conductivity (σac) was increased with increasing both temperature and frequency. The activation energy (Ea) was determined by Arrhenius equation. Besides, the frequency dependence of σac was analyzed by Jonscher’s universal power law (σac = Aωs). Thus, the value of the frequency exponent (s) were determined.


2018 ◽  
Vol 52 (4) ◽  
pp. 411-413 ◽  
Author(s):  
V. G. Zalessky ◽  
V. V. Kaminski ◽  
S. Hirai ◽  
Y. Kubota ◽  
N. V. Sharenkova

Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. 25ND-31ND ◽  
Author(s):  
Alan C. Tripp

Geophysics has proved to be an effective means of prospecting for the raw materials necessary for modern life. Electromagnetic techniques are the methods of choice when buried treasure has an anomalous electrical conductivity or dielectric permittivity. In the past 75 years, SEG has provided a forum for the usually rational exchange of ideas in electromagnetic prospecting as well as a bazaar for goods and services.


2020 ◽  
Author(s):  
Slawek M. Tulaczyk ◽  
Neil T. Foley

Abstract. We have examined a general expression giving the specular reflection coefficient for a radar wave approaching a reflecting interface with normal incidence. The reflecting interface separates two homogeneous media, the properties of which are fully described by three scalar quantities: dielectric permittivity, magnetic permeability, and electrical conductivity. The derived relationship indicates that electrical conductivity should not be neglected a priori in glaciological investigations of subglacial materials, and in GPR studies of saturated sediments and bedrock, even at the high end of typical linear radar frequencies used in such investigations (e.g., 100 MHz). Our own experience in resistivity surveying in Antarctica, combined with a literature review, suggests that a wide range of geologic materials can have electrical conductivity that is high enough to significantly impact the value of radar reflectivity. Furthermore, we have given two examples of prior studies in which inclusion of electrical conductivity in calculation of the radar bed reflectivity may provide an explanation for results that may be considered surprising if the impact of electrical conductivity on radar reflection is neglected. The commonly made assumption that only dielectric permittivity of the two media need to be considered in interpretation of radar reflectivity can lead to erroneous conclusions.


Sign in / Sign up

Export Citation Format

Share Document