Investigation of geochemical characteristics of hydrocarbon gas and its implications for Late Miocene transpressional strength — A study in the Fangzheng Basin, Northeast China

2018 ◽  
Vol 6 (1) ◽  
pp. T83-T96 ◽  
Author(s):  
Bo Liu ◽  
Dongqi Yan ◽  
Xiaofei Fu ◽  
Yanfang Lü ◽  
Lei Gong ◽  
...  

We have assessed the genetic types of hydrocarbon gas in the Fangzheng Basin by analyzing the effects of geologic settings on gas generation, kerogen types in source rocks, gas compositions, stable carbon isotopes of individual alkanes, and biomarkers in gas-associated oil. The primary compounds of source rocks in the Eocene Xinancun Formation and Paleocene Wuyun Formation are found as type II and III kerogens, respectively. The hydrocarbon gas in the Fangzheng Basin can be classified into three families. Family I is affected by biodegradation, and it is dry gas generated from low-maturity lacustrine mudstones (i.e., oil-prone source rocks) of the Xinancun Formation. Family II is coal-derived wet gas accompanied by oil, and it is typically generated by type III kerogen of mudstones in coal measures of the Wuyun Formation. Family III is mixed-type wet gas whose primary compound is oil-associated gas, and it is mainly generated by type II kerogen in the Xinancun Formation and partly from type III kerogen in the Wuyun Formation in the Daluomi (DLM) Uplift. The family I and II hydrocarbon gases are located in the Zhuozhugang (ZSG) Sag. Family III hydrocarbon gas was formed in the mixing process of different genesis gas through the active faults because the late Miocene transpressional strength of uplift in the DLM Uplift was more intense than that in the ZSG Sag after the development of increased accommodation space coeval with intrabasinal rifting before Oligocene.

1987 ◽  
Vol 51 (362) ◽  
pp. 483-493 ◽  
Author(s):  
G. P. Cooles ◽  
A. S. Mackenzie ◽  
R. J. Parkes

AbstractNon-hydrocarbon gas species (CO2, N2, H2) are locally important in exploration for gas, and there is a growing body of evidence that acid water originating in shales materially affects the diagenesis of nearby sandstones. These gases have been studied by analysing the products of closed-vessel hydrous pyrolysis of known petroleum source rocks, and comparing the results with field observations. Alteration of petroleum source rocks at temperatures >250°C yields a significant amount of non-hydrocarbon components. Ethanoate and higher acid anions are liberated in substantial quantities; the yield appears to be related to the oxygen content of the sedimentary organic matter present.The non-hydrocarbon gases CO2, H2and N2are frequently the dominant gaseous products from hydrous pyrolysis: in the natural environment the same rock sequences at a higher maturity preferentially generate hydrocarbon gases—mainly methane. This discrepancy may be attributed to reaction and phase thermodynamic effects between laboratory and natural systems, behaviour that has important implications in the prediction of gas generation and composition in nature by source rock pyrolysis in the laboratory.


2019 ◽  
Vol 56 (4) ◽  
pp. 365-396
Author(s):  
Debra Higley ◽  
Catherine Enomoto

Nine 1D burial history models were built across the Appalachian basin to reconstruct the burial, erosional, and thermal maturation histories of contained petroleum source rocks. Models were calibrated to measured downhole temperatures, and to vitrinite reflectance (% Ro) data for Devonian through Pennsylvanian source rocks. The highest levels of thermal maturity in petroleum source rocks are within and proximal to the Rome trough in the deep basin, which are also within the confluence of increased structural complexity and associated faulting, overpressured Devonian shales, and thick intervals of salt in the underlying Silurian Salina Group. Models incorporate minor erosion from 260 to 140 million years ago (Ma) that allows for extended burial and heating of underlying strata. Two modeled times of increased erosion, from 140 to 90 Ma and 23 to 5.3 Ma, are followed by lesser erosion from 5.3 Ma to Present. Absent strata are mainly Permian shales and sandstone; thickness of these removed layers increased from about 6200 ft (1890 m) west of the Rome trough to as much as 9650 ft (2940 m) within the trough. The onset of oil generation based on 0.6% Ro ranges from 387 to 306 Ma for the Utica Shale, and 359 to 282 Ma for Middle Devonian to basal Mississippian shales. The ~1.2% Ro onset of wet gas generation ranges from 360 to 281 Ma in the Utica Shale, and 298 to 150 Ma for Devonian to lowermost Mississippian shales.


1989 ◽  
Vol 29 (1) ◽  
pp. 96 ◽  
Author(s):  
G.W. O'Brien ◽  
D.T. Heggie

During April- May 1988, the BMR research vessel Rig Seismic carried out a 21- day geochemical and sedimento- logical research program in the Otway (17 days) and Gippsland (4 days) Basins. The concentrations and molecular compositions of light hydrocarbon gases (C1- C4) were measured in sediments at 203 locations on the continental shelf and upper continental slope: the presence of thermogenic hydrocarbons was inferred from the molecular compositions of the gas mixtures. Thermogenic hydrocarbons were identified in near- surface sediments at 32 locations in the Otway Basin; 6 of these locations were on the Crayfish Platform, 7 were on the Mussel Platform and 17 were in the Voluta Trough. Thermogenic hydrocarbons were identified at 10 locations in the Gippsland Basin. Data from the Otway Basin indicated that total C1- C4 gas concentrations were higher in the Voluta Trough than on the basin margins, probably because intense faulting in the trough facilitates gas migration from deeply buried source rocks and/or reservoirs to the seafloor. However, anomalies were detected where the Tertiary sequence was thick and relatively unfaulted. The wet gas contents of the anomalies were highest on the basin margins, lower in the Voluta Trough and co- varied with the depth of burial of the basal Early Cretaceous sedimentary sequence. These data, when integrated with geohistory, thermal maturation modelling and well data, suggest that the areas with the best potential for liquid hydrocarbon entrapment and preservation are the Crayfish Platform and the inshore part of the Mussel Platform. In contrast, the Late Cretaceous Sherbrook Group and much of the Voluta Trough appear to be gas prone.Thermogenic anomalies in the Gippsland Basin were concentrated within and along the margins of the Central Deep where mature Latrobe Group source rocks are present. The wet gas content of these anomalies was variable, which is consistent with the spatial heterogeneity of hydrocarbon accumulations in the Gippsland Basin.


2020 ◽  
Vol 123 (4) ◽  
pp. 587-596
Author(s):  
A. Emanuel ◽  
C.H. Kasanzu ◽  
M. Kagya

Abstract Triassic to mid-Jurassic core samples of the Mandawa basin, southern Tanzania (western coast of the Indian Ocean), were geochemically analyzed in order to constrain source rock potentials and petroleum generation prospects of different stratigraphic formations within the coastal basin complex. The samples were collected from the Mihambia, Mbuo and Nondwa Formations in the basin. Geochemical characterization of source rocks intersected in exploration wells drilled between 503 to 4042 m below surface yielded highly variable organic matter contents (TOC) rated between fair and very good potential source rocks (0.5 to 8.7 wt%; mean ca. 2.3 wt%). Based on bulk geochemical data obtained in this study, the Mandawa source rocks are mainly Type I, Type II, Type III, mixed Types II/III and Type IV kerogens, with a predominance of Type II, Type III and mixed Type II/III. Based on pyrolysis data (Tmax 417 to 473oC; PI = 0.02 to 0.47; highly variable HI = 13 to 1 000 mg/gTOC; OI = 16 to 225 mg/g; and VR values of between 0.24 to 0.95% Ro) we suggest that the Triassic Mbuo Formation and possibly the mid-Jurassic Mihambia Formation have a higher potential for hydrocarbon generation than the Nondwa Formation as they are relatively thermally mature.


2021 ◽  
Author(s):  
Ainura Zhanserkeyeva ◽  
Akzhan Kassenov

Abstract Positive geological and geochemical prerequisites have been identified for the purpose of increasing hydrocarbon resource potential in the under-explored study area. A methodology has been developed for assessing the hydrocarbon potential and prospecting for new promising oil and gas accumulation zones using the technology of basin modeling, provided there is a lack of initial data. A high hydrocarbon source rock generative potential and the degree of thermal maturity of the Lower Permian, Mid Carboniferous and Upper Devonian strata of the south-eastern part of the Precaspian depression have been revealed. Seismostratigraphic and geodynamic analysis was carried out and the main stages of the geodynamic evolution of the study area were reconstructed based on combination of all available geological and geophysical information, recent exploration drilling results and unpublished subsurface studies. The results of thermotectonic modelling confirm the possibility of vertical migration of hydrocarbons generated in Paleozoic sediments. A revision of the previously performed interpretation of 3D seismic data has been carried out; and for the first time, intrasalt sedimentary packets of presumably Upper Permian age have been identified as independent objects, which can be potential hydrocarbon traps. For the Lower Permian deposits, type III kerogen predominates, which may be associated with an increase in collisional processes in the Late Paleozoic time and an active input of plant organic matter. For Mid Carboniferous sediments, mixed type II / III kerogen or type II kerogen prevails. Analysis of the evolution of thermal maturity indicates the unevenness of the entry of potential oil and gas source strata into the main zone of oil generation. For kerogen type III of the Lower Permian source rocks, the peak of oil generation falls on the Late Cretaceous. For predominantly carbonate and terrigenous-carbonate Middle Carboniferous source rocks the peak of generation falls on the Jurassic. The most submerged Devonian source rocks are located mainly in the zone of wet gas generation. The development of salt tectonics from the Late Triassic to the Cenozoic contributed to the vertical migration of hydrocarbons into the post-salt complex. The identified oil fields in the Upper Triassic-Jurassic stratigraphic section are mainly confined to the four-way dip structural closured above the steep flanks of salt structures.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Damien Do Couto ◽  
Sylvain Garel ◽  
Andrea Moscariello ◽  
Samer Bou Daher ◽  
Ralf Littke ◽  
...  

AbstractAn extensive subsurface investigation evaluating the geothermal energy resources and underground thermal energy storage potential is being carried out in the southwestern part of the Swiss Molasse Basin around the Geneva Canton. Among this process, the evaluation of the petroleum source-rock type and potential is an important step to understand the petroleum system responsible of some oil and gas shows at surface and subsurface. This study provides a first appraisal of the risk to encounter possible undesired occurrence of hydrocarbons in the subsurface of the Geneva Basin. Upon the numerous source-rocks mentioned in the petroleum systems of the North Alpine Foreland Basin, the marine Type II Toarcian shales (Lias) and the terrigenous Type III Carboniferous coals and shales have been sampled from wells and characterized with Rock–Eval pyrolysis and GC–MS analysis. The Toarcian shales (known as the Posidonia shales) are showing a dominant Type II organic matter composition with a Type III component in the Jura region and the south of the basin. Its thermal maturity (~ 0.7 VRr%) shows that this source-rock currently generates hydrocarbons at depth. The Carboniferous coals and shales show a dominant Type III organic matter with slight marine to lacustrine component, in the wet gas window below the Geneva Basin. Two bitumen samples retrieved at surface (Roulave stream) and in a shallow borehole (Satigny) are heavily biodegraded. Relative abundance of regular steranes of the Roulave bitumen indicates an origin from a marine Type II organic matter. The source of the Satigny bitumen is supposedly the same even though a deeper source-rock, such as the lacustrine Permian shales expelling oil in the Jura region, can’t be discarded. The oil-prone Toarcian shales in the oil window are the most likely source of this bitumen. A gas pocket encountered in the shallow well of Satigny (Geneva Canton), was investigated for molecular and stable isotopic gas composition. The analyses indicated that the gas is made of a mixture of microbial (very low δ13C1) and thermogenic gas. The isotopic composition of ethane and propane suggests a thermogenic origin from an overmature Type II source-rock (> 1.6 VRr%) or from a terrigenous Type III source at a maturity of ~ 1.2 VRr%. The Carboniferous seems to be the only source-rock satisfying these constraints at depth. The petroleum potential of the marine Toarcian shales below the Geneva Basin remains nevertheless limited given the limited thickness of the source-rock across the area and does not pose a high risk for geothermal exploration. A higher risk is assigned to Permian and Carboniferous source-rocks at depth where they reached gas window maturity and generated large amount of gas below sealing Triassic evaporites. The large amount of faults and fractures cross-cutting the entire stratigraphic succession in the basin certainly serve as preferential migration pathways for gas, explaining its presence in shallow stratigraphic levels such as at Satigny.


2001 ◽  
Vol 41 (1) ◽  
pp. 523 ◽  
Author(s):  
C.J. Boreham ◽  
J.M. Hope ◽  
B. Hartung-Kagi

Natural gases from all of Australia’s major gas provinces in the Adavale, Amadeus, Bass, Bonaparte, Bowen/ Surat, Browse, Canning, Carnarvon, Cooper/Eromanga, Duntroon, Gippsland, Otway and Perth basins have been examined using molecular and carbon isotopic compositions in order to define their source, maturity and secondary alteration processes.The molecular compositions of the gaseous hydrocarbons range from highly wet to extremely dry. On average, reservoired gases predominantly derived from land plants are slightly wetter than those derived from marine sources. The non-hydrocarbon gases CO2 and N2 were sourced from both inorganic and organic materials. A mantle and/or igneous origin is likely in the majority of gases with CO2 contents >5%. For gases with lower CO2 contents, an additional organic input, associated with hydrocarbon generation, is recognised where δ13C CO2 is A strong inter-dependency between source and maturity has been recognised from the carbon isotopic composition of individual gaseous hydrocarbons. This relationship has highlighted some shortcomings of common graphical tools for interpretation of carbon isotopic data. The combination of the carbon isotopic composition of gaseous hydrocarbons and the low molecular weight nalkanes in the accompanying oil allows our knowledge of oil-source correlations and oil families to be used to correlate gases with their sources. This approach has identified source rocks for gas ranging in age from the Ordovician in the Amadeus Basin to Late Cretaceous- Early Tertiary sources in the Bass and Gippsland basins. The carbon isotopic composition of organic matter, approximated using the δ13C of iso-butane, shows a progressive enrichment in 13C with decreasing source age, together with marine source rocks for gas being isotopically lighter than those from land plant sources. The Permian was a time when organic matter was enriched in 13C and isotopically uniform on a regional scale.Secondary, in-reservoir alteration has played a major role in the modification of Australian gas accumulations. Thus, biodegradation, prominent in the Bowen/Surat, Browse, Carnarvon and Gippsland basins, is found in both hydrocarbon and non-hydrocarbon gases. This is recognised by an increase in gas dryness, elevated isoalkane to n-alkane ratio, differential increase in δ13C of the individual wet gas components, a decrease in δ13C of methane and a reduction in CO2 content concomitant with enrichment in 13C. Evidence of water-washing has been identified in accumulations in the Bonaparte and Cooper/Eromanga basins, resulting in an increase in the wet gas content. Seal integrity is also a major risk for the preservation of natural gas accumulations, although its effect on gas composition is only evident in extreme cases, such as the Amadeus Basin, where preferential leakage of methane in the Palm Valley field has resulted in the residual methane becoming enriched in 13C.The greater mobility of gas within subsurface rocks can have a detrimental effect on oil composition whereby gas-stripping of light hydrocarbons is common amongst Australian oil accumulations. Alternatively, the availability of gas, derived from a source rock common to or different from oil, was likely to have been a prime factor controlling the regional distribution of oil, whereby mixing of both results in increased oil mobility and can lead to a greater access to the number and types of traps in the subsurface.


2011 ◽  
Vol 51 (2) ◽  
pp. 718
Author(s):  
Anthony Hill ◽  
Sandra Menpes ◽  
Guillaume Backè ◽  
Hani Khair ◽  
Arezoo Siasitorbaty

Potential shale gas bearing basins in SA are primarily dominated by thermogenic play types and span the Neoproterozoic to Cretaceous. Whilst companies have only recently commenced exploring for shale gas in the Permian Cooper Basin, strong gas shows have been routinely observed and recorded since exploration commenced in the basin in 1959. The regionally extensive Roseneath and Murteree shales represent the primary exploration focus and reach maximum thicknesses of 103 m and 86 m respectively with TOC values up to 9%. These shales are in the gas window in large parts of the basin, particularly in the Patchawarra and Nappamerri troughs. Outside the Cooper Basin, thick shale sequences in the Crayfish Subgroup of the Otway Basin, in particular the Upper and Lower Sawpit shales and to a lesser extent the Laira Formation, have good shale gas potential in the deeper portions of the basin. TOC averages up to 3% are recorded in these shales in the Penola Trough; maturities in the range of 1.3–1.5% have been modelled. Thick Permian marine shales of the Arckaringa Basin have excellent source rock characteristics, with TOC’s ranging 4.1–7.4% and averaging 5.2% over an interval exceeding 150 m in the Phillipson Trough; however, these Type II source rocks are not sufficiently mature for gas generation anywhere in the Arckaringa Basin. Shale gas has the potential to rival CSM in eastern Australia; its potential is now being explored in SA.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinliang Zhang ◽  
Yang Li ◽  
Jinshui Liu ◽  
Xue Yan ◽  
Lianjie Li ◽  
...  

The hydrocarbon generation model and hydrocarbon potential are investigated in the Lishui Sag, based on gold-tube pyrolysis experiments of deeply buried type Ⅲ kerogen. From this, we discuss the classification of kerogen types of source rocks with mixed organic matter sources. The hydrocarbon generated from the source rocks of the Lingfeng Formation and Yueguifeng Formation is dominated by natural gases with little oil in the West subsag, and the hydrocarbon generation model of the Lingfeng Formation is similar to that of Yueguifeng Formation, but the gas potential of Lingfeng Formation is higher than that of Yueguifeng Formation. The hydrocarbon potential of the Yueguifeng Formation in the East subsag is much higher than the West subsag, and it has considerable oil potential. Macerals diversity of source rocks is responsible for the difference of hydrocarbon generation characteristics for type Ⅲ kerogen in the Lishui Sag. It is not rigorous to evaluate the hydrocarbon potential of kerogen only based on pyrolysis parameters. Application of kerogen type index (KTI) can improve the accuracy of the classification of kerogen types with mixed organic matter sources. According to the classical kerogen classification template, the selected samples belong to type III kerogen. In this article, the selected samples were further subdivided into type III and type II/III based on the KTI value. Type III kerogen (0.5 ≤ KTI < 1.5) mainly produces gas, and type II/III kerogen (1.5 ≤ KTI < 5) mainly produces gas, but its oil potential is higher than that of type III.


1998 ◽  
Vol 38 (1) ◽  
pp. 399 ◽  
Author(s):  
C.J. Boreham ◽  
R.A. de Boer

Dry gas in the Gilmore Field of the Adavale Basin has been sourced from both wet gas associated with oil generation, together with methane from a deep, overmature source. The latter gas input is further characterised by a high nitrogen content co-generated with isotopically heavy methane and carbon dioxide. The eastern margin of the Lissoy Sandstone principal reservoir unit contains the higher content of overmature dry gas supporting reservoir compiirtmenmlisalion and a more favourable migration pathway to this region. The combination of a molecular and multi-element isotopic approach is an effective tool for the recognition of an overmature, dry gas source. This deep source represents a play concept that previously has been undervalued and may be more widespread within Australian sedimentary basins.The maturity level of the wet gas and associated oil are identical, having reached an equivalent vitrinite reflectance of 1.4−1.6 per cent. Modelling studies support the concept of local Devonian source rocks for the wet gas and oil. Reservoir filling from late stage, high maturity oil and gas generation and expulsion, was a result of reactivation of petroleum generation from Devonian source rocks during the Early Cretaceous. The large input of dry gas from a deeper and highly overmature source is a more recent event. This gas can fractionally displace condensable C2+ liquids already in the reservoir possibly allowing tertiary migration into younger reservoirs, or adjacent structures.Oil recovered from Gilmore-2 has been sourced from Devonian marine organic matter, deposited under mildly evaporitic, restricted marine conditions. The most likely source rocks in the Adavale Basin are the basal marine shale of the Log Creek Formation, algal shales at the top of the Lissoy Sandstone, and the Cooladdi Dolomite. Source-sensitive biomarkers and carbon isotope composition of the Gilmore-2 oil have much in common with other Devonian-sourced oils from the Bonaparte and Canning basins. The chemical link between western and eastern Australian Devonian oils may suggest diachronous development of source rocks over a wide extent. This implies that the source element of the Devonian Petroleum Supersystem may be present in other sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document