Renal epithelial gene expression profile and bismuth-induced resistance against cisplatin nephrotoxicity

2003 ◽  
Vol 22 (10) ◽  
pp. 535-540 ◽  
Author(s):  
Berend T Leussink ◽  
Hans J Baelde ◽  
Thirza M Broekhuizen-van den Berg ◽  
Emile de Heer ◽  
Gijsbert B van der Voet ◽  
...  

Nephrotoxicity is the most important dose-limiting factor in cisplatin based anti-neoplastic treatment. Pretreatment with bismuth salts, used as pharmaceuticals to treat gastric disorders, has been demonstrated to reduce cisplatin-induced renal cell death in clinical settings and during in vivo and in vitro animal experiments. To investigate the genomic basis of this renoprotective effect, we exposed NRK-52E cells, a cell line of rat proximal tubular epithelial origin, to 33 mM Bi3 for 12 hours, which made them resistant to cisplatin-induced apoptosis. Differentially expressed genes in treated and untreated NRK-52E cells were detected by subtraction PCR and microarray techniques. Genes found to be down regulated (0.17 / 0.31-times) were cytochrome c oxidase subunit I, BAR (an apoptosis regulator), heat-shock protein 70-like protein, and three proteins belonging to the translation machinery (ribosomal proteins S7 and L17, and S1, a member of the elongation factor 1-alpha family). The only up-regulated gene was glutathione Stransferase subunit 3A (1.89-times). Guided by the expression levels of these genes, it may be possible to improve renoprotective treatments during anti-neoplastic therapies.

2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 243-243 ◽  
Author(s):  
Katherine T. Ostapoff ◽  
Niranjan Awasthi ◽  
Peter L. Yen ◽  
Changhua Zhang ◽  
Margaret A. Schwarz ◽  
...  

243 Background: The phosphatidylinositol-3-kinase (PI3K)/AKT and mammalian target of rapamycin (mTOR) signaling pathway dysregulation is a prominent feature of pancreatic ductal adenocarcinoma (PDAC). Gemcitabine (GEM), a standard systemic treatment for PDAC, has limited clinical benefits. The present study investigated the effects of NVP-BEZ235 (BEZ235), a novel dual PI3K/mTOR inhibitor, in combination with gemcitabine and endothelial monocyte activating polypeptide II (EMAP) in experimental PDAC. Methods: Protein expression and cell proliferation were analyzed by Western blotting and WST-1 assay. Animal experiments were performed in murine xenografts. Results: BEZ235 inhibited phospho-AKT (Ser473) and phospho-mTOR (Ser2448) expression in PDAC (AsPC-1), endothelial (HUVECs) and fibroblast (WI-38) cells. NVP-BEZ235 also caused a significant dephosphorylation of downstream mTORC1 target proteins phospho-p70 S6K (Thr389) and phospho-4E-BP1 (Thr37/46). In vitro 72-hour proliferation of four PDAC cell lines was significantly inhibited by BEZ235. Additive effects on proliferation inhibition were observed in the BEZ235 and GEM combination in PDAC cells and in combination of BEZ235 or EMAP with gemcitabine in HUVECs and WI-38 cells. BEZ235, alone or in combination with GEM and EMAP, induced apoptosis in AsPC-1, HUVECs and WI-38 cells as observed by increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. PDAC in vivo therapy demonstrated that compared to controls (median survival: 16 days), animal survival increased after BEZ235 and EMAP therapy alone (both 21 days) and GEM monotherapy (28 days). Further increases in survival occurred in combination therapy groups BEZ235+GEM (30 days, p=0.007), BEZ235+EMAP (27 days, p=0.02), GEM+EMAP (31 days, p=0.001) and BEZ235+GEM +EMAP (33 days, p=0.004). Conclusions: BEZ235 has experimental PDAC antitumor activity in vitro and in vivo that can be enhanced in combination with cytotoxic (GEM) and antiendothelial (EMAP) agents. These findings demonstrate advantages of combination therapy strategies targeting multiple pathways in pancreatic cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia Han ◽  
Wei Hou ◽  
Bi-qing Cai ◽  
Fan Zhang ◽  
Jian-cai Tang

This study aimed to investigate the inhibitory effect of 12-epi-napelline on leukemia cells and its possible mechanisms. The inhibitory effects of 12-epi-napelline on K-562 and HL-60 cells were evaluated using the CCK-8 assay, cell cycle arrest and apoptosis were detected by flow cytometry, and the expression of related proteins was measured by western blot. A K-562 tumor model was established to evaluate the antitumor effect of 12-epi-napelline in vivo. A reduction in leukemia cell viability was observed after treatment with 12-epi-napelline. It was determined that the cell cycle was arrested in the G0/G1 phase, and the cell apoptosis rate was increased. Moreover, caspase-3 and Bcl-2 were downregulated, whereas cleaved caspase-3 and caspase-9 were upregulated. Further study revealed that 12-epi-napelline could suppress the expression of PI3K, AKT, p-AKT, and mTOR. Insulin-like growth factor 1 (IGF-1) attenuated 12-epi-napelline-induced apoptosis and ameliorated the repression of PI3K, AKT, p-AKT, and mTOR by 12-epi-napelline. Animal experiments clearly showed that 12-epi-napelline inhibited tumor growth. In conclusion, 12-epi-napelline restrained leukemia cell proliferation by suppressing the PI3K/AKT/mTOR pathway in vitro and in vivo.


2014 ◽  
Vol 289 (44) ◽  
pp. 30499-30510 ◽  
Author(s):  
Erna Davydova ◽  
Angela Y. Y. Ho ◽  
Jedrzej Malecki ◽  
Anders Moen ◽  
Jorrit M. Enserink ◽  
...  

The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.


2007 ◽  
Vol 293 (1) ◽  
pp. F52-F59 ◽  
Author(s):  
Fang Yu ◽  
Judit Megyesi ◽  
Robert L. Safirstein ◽  
Peter M. Price

E2F1 is a key regulator that links cell cycle progression and cell death. E2F1 activity is controlled by Cdk2-cyclin complexes via several mechanisms, such as phosphorylation of retinoblastoma protein (pRb) to release E2F1, direct phosphorylation, and stable physical interaction. We have demonstrated that cisplatin cytotoxicity depends on Cdk2 activity, and Cdk2 inhibition protects kidney cells from cisplatin-induced cell death in vitro and in vivo. Now we show that E2F1 is an important downstream effector of Cdk2 that accumulates in mouse kidneys and in cultured mouse proximal tubular cells (TKPTS) after cisplatin exposure by a Cdk2-dependent mechanism. Direct inhibition of E2F1 by transduction with adenoviruses expressing an E2F1-binding protein (TopBP1) protected TKPTS cells from cisplatin-induced apoptosis, whereas overexpression of E2F1 caused cell death. Moreover, E2F1 knockout mice were markedly protected against cisplatin nephrotoxicity by both functional and histological criteria. Collectively, cisplatin-induced cell death is dependent on Cdk2 activity, which is at least partly through the Cdk2-E2F1 pathway both in vitro and in vivo.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fanghua Li ◽  
Anbang Sun ◽  
Genyang Cheng ◽  
Dong Liu ◽  
Jing Xiao ◽  
...  

AICAR (Acadesine/AICA riboside) as an activator of AMPK, can protect renal tubular cells from cisplatin induced apoptosis. But in our experiment, the dorsomorphin (compound C, an inhibitor of AMPK) also significantly reduced cisplatin induced renal tubular cells apoptosis. Accordingly, we tested whether compound C can protect cisplatin-induced nephrotoxicity and the specific mechanism. Here, we treated Boston University mouse proximal tubular cells (BUMPT-306) with cisplatin and/or different dosages of AICAR (Acadesine/AICA riboside) or compound C to confirm the effect of AICAR and compound C in vitro. The AMPK-siRNA treated cells to evaluate whether the protective effect of compound C was through inhibiting AMPK. Male C57BL/6 mice were used to verify the effect of compound C in vivo. Both compound C and AICAR can reduce renal tubular cells apoptosis in dose-dependent manners, and compound C decreased serum creatinine and renal tubular injury induced by cisplatin. Mechanistically, compound C inhibited P53, CHOP and p-IREα during cisplatin treatment. Our results demonstrated that compound C inhibited AMPK, but the renal protective effects of compound C were not through AMPK. Instead, compound C protected cisplatin nephrotoxicity by inhibiting P53 and endoplasmic reticulum (ER) stress. Therefore, compound C may protect against cisplatin-induced nephrotoxicity through pleiotropic effects.


1995 ◽  
Vol 182 (5) ◽  
pp. 1395-1401 ◽  
Author(s):  
D P Hughes ◽  
I N Crispe

We report a soluble isoform of mouse Fas, which is generated by alternative splicing of Fas mRNA to a newly identified exon located between exons 2 and 3 of the previously published Fas sequence. This splicing event creates a novel Fas transcript, Fas beta, with the potential to encode a truncated form of the extracellular domain, termed Fas B. In vitro, P815 mastocytoma cells transfected with Fas B become resistant to Fas ligand-induced apoptosis, and the resistance is mediated by a secreted product of the transfected cells. In vivo, Fas beta mRNA expression is correlated inversely with apoptosis among subsets of intrahepatic T lymphocytes, a cell population in which activation-induced T cell apoptosis occurs. We propose that Fas B is a new cytokine that acts physiologically to limit apoptosis induced by Fas ligand.


2017 ◽  
Vol 41 (5) ◽  
pp. 1935-1946 ◽  
Author(s):  
Lin Fan ◽  
Chunyan Zhu ◽  
Rongmin Qiu ◽  
Pengfei Zan ◽  
Zhi Zheng ◽  
...  

Aim: Osteosarcoma (OS) is an aggressive bone malignancy that affects rapidly growing bones and is associated with a poor prognosis. Our previous study showed that cytochrome c1 (CYC1), a subunit of the cytochrome bc1 complex (complex III) of the mitochondrial electron chain, is overexpressed in human OS tissues and cell lines and its silencing induces apoptosis in vitro and inhibits tumor growth in vivo. Here, we investigated the mechanism underlying the modulation of CYC1 expression in OS and its role in the resistance of OS to apoptosis. Methods: qRT-PCR, luciferase reporter assay, western blotting, fow cytometry, and animal experiments were performed in this study. Results: MicroRNA (miR)-661 was identified as a downregulated miRNA in OS tissues and cells and shown to directly target CYC1. Ectopically expressed miR-661 inhibited OS cell growth, promoted apoptosis, and reduced the activity of mitochondrial complex III. miR-661 overexpression enhanced TRAIL or STS induced apoptosis and promoted the release of cytochrome c into the cytosol, which induced caspase-9 activation, and these effects were abolished by a caspase-3 inhibitor. Overexpression of CYC1 rescued the effects of miR-661 on sensitizing OS cells to TRAIL or STS induced apoptosis, indicating that the antitumor effect of miR-661 is mediated by the downregulation of CYC1. In vivo, miR-661 overexpression sensitized tumors to TRAIL or STS induced apoptosis in a xenograft mouse model, and these effects were attenuated by co-expression of CYC1. Conclusion: Taken together, our results indicate that miR-661 plays a tumor suppressor role in OS mediated by the downregulation of CYC1, suggesting a potential mechanism underlying cell death resistance in OS.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


Sign in / Sign up

Export Citation Format

Share Document