Experiments on the Origin of the Wassermann Reaction in the Cerebro-Spinal Fluid

1938 ◽  
Vol 84 (349) ◽  
pp. 370-377 ◽  
Author(s):  
A. Beck

Whilst it is an undisputed fact that under certain clinical and experimental conditions various antibodies (antitoxins, agglutinins, bacterio- and hæmolysins, complement-fixing antibodies) can be demonstrated in the cerebrospinal fluid, there is a divergency of opinion about their origin. Whereas some authors (Dujardin and Dumont, Ramon, Descombey and Bilal, Neufeld and Szyle, Nélis) ascribe their presence in the cerebro-spinal fluid to their passage from the blood through a damaged blood-cerebro-spinal fluid barrier, other investigators (Mutermilch, liiert, Grabow and Plaut, Friedemann and Elkeles) believe that the central nervous system or its membranes are able to produce antibodies on their own upon contact with an antigen. In the case of the Wassermann antibody in the cerebro-spinal fluid the question of its origin is of particular interest, because of the occasional occurrence of cases which show a positive Wassermann reaction in the cerebro-spinal fluid and a negative or weaker reaction in the blood. This divergence between blood and cerebro-spinal fluid is often quoted as an example of the independence of the cerebro-spinal fluid antibody.

Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 300
Author(s):  
Petr Kelbich ◽  
Aleš Hejčl ◽  
Jan Krejsek ◽  
Tomáš Radovnický ◽  
Inka Matuchová ◽  
...  

Extravasation of blood in the central nervous system (CNS) represents a very strong damaged associated molecular patterns (DAMP) which is followed by rapid inflammation and can participate in worse outcome of patients. We analyzed cerebrospinal fluid (CSF) from 139 patients after the CNS hemorrhage. We compared 109 survivors (Glasgow Outcome Score (GOS) 5-3) and 30 patients with poor outcomes (GOS 2-1). Statistical evaluations were performed using the Wilcoxon signed-rank test and the Mann–Whitney U test. Almost the same numbers of erythrocytes in both subgroups appeared in days 0–3 (p = 0.927) and a significant increase in patients with GOS 2-1 in days 7–10 after the hemorrhage (p = 0.004) revealed persistence of extravascular blood in the CNS as an adverse factor. We assess 43.3% of patients with GOS 2-1 and only 27.5% of patients with GOS 5-3 with low values of the coefficient of energy balance (KEB < 15.0) in days 0–3 after the hemorrhage as a trend to immediate intensive inflammation in the CNS of patients with poor outcomes. We consider significantly higher concentration of total protein of patients with GOS 2-1 in days 0–3 after hemorrhage (p = 0.008) as the evidence of immediate simultaneously manifested intensive inflammation, swelling of the brain and elevation of intracranial pressure.


Author(s):  
Sara Gredmark-Russ ◽  
Renata Varnaite

Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


PEDIATRICS ◽  
1958 ◽  
Vol 21 (5) ◽  
pp. 703-709
Author(s):  
John C. Gall ◽  
Alvin B. Hayles ◽  
Robert G. Siekert ◽  
Haddow M. Keith

Forty cases of disease of the central nervous system, characterized by several episodes and disseminated lesions, with onset in childhood and clinically typical of multiple sclerosis, were studied. The disease as it occurs in children does not appear to differ clinically from the disease as observed in adults, in respect to mode of onset, symptoms, physical findings, and changes in the spinal fluid. In the Mayo Clinic series, however, almost twice as many girls as boys were affected. A pediatrician confronted with a child showing evidence of scattered neurologic deficits that remit, particularly a disturbance of vision and co-ordination, should consider the possibility of multiple sclerosis.


1927 ◽  
Vol 23 (11) ◽  
pp. 1182-1182
Author(s):  
D. K. Bogoroditsky

The technique of this reaction, suggested by two Japanese authors, Takata and Aga, in 1926, consists in adding 1 drop of a 10% Na carbonici solution and 0.3 of a freshly prepared mixture of equal parts 0.5% sulfa solution and 0.02% fuchsin (non-acid) solution to 1 cc of liquid. The mixture is shaken well and left in a test tube, and examined now after shaking, after h, after h, and after 24 h. Having tested this reaction in 60 patients, D.K. Bogoroditsky found that it is a very subtle indicator of the state of the central nervous system.


Neurosurgery ◽  
2015 ◽  
Vol 78 (3) ◽  
pp. 343-352 ◽  
Author(s):  
Arnault Tauziede-Espariat ◽  
Andre Maues de Paula ◽  
Melanie Pages ◽  
Annie Laquerriere ◽  
Emilie Caietta ◽  
...  

Abstract BACKGROUND: Primary leptomeningeal gliomatosis (PLG) is a poorly recognized tumor of the central nervous system. OBJECTIVE: To describe the histopathological, immunohistochemical, and molecular features of PLG. METHODS: Results of our multicentric retrospective study of 6 PLG cases (3 pediatric and 3 adult) were compared with literature data. RESULTS: The mean age was 54.7 years for adults and 8.7 years for children, with 3 males and 3 females. Clinical symptoms were nonspecific. Cerebrospinal fluid analyses showed a high protein level often associated with pleocytosis but without neoplastic cells. On neuroimaging, diffuse leptomeningeal enhancement and hydrocephalus were observed, except in 1 case. PLG was mostly misinterpreted as infectious or tumoral meningitis. The first biopsy was negative in 50% of cases. Histopathologically, PLG cases corresponded to 1 oligodendroglioma without 1p19q codeletion and 5 astrocytomas without expression of p53. No immunostaining for IDH1R132H and no mutations of IDH1/2 and H3F3A genes were found. Overall survival was highly variable (2-82 months) but seems to be increased in children treated with chemotherapy. CONCLUSION: This study shows the difficulties of PLG diagnosis. The challenge is to achieve an early biopsy to establish a diagnosis and to begin a treatment, but the prognosis remains poor. PLG seems to have a different molecular and immunohistochemical pattern compared with intraparenchymal malignant gliomas.


2015 ◽  
Vol 59 (4) ◽  
pp. 339-344 ◽  
Author(s):  
Juan Xing ◽  
Lisa Radkay ◽  
Sara E. Monaco ◽  
Christine G. Roth ◽  
Liron Pantanowitz

Lyme disease can affect the central nervous system causing a B-cell-predominant lymphocytic pleocytosis. Since most reactions to infection in the cerebrospinal fluid (CSF) are typically T-cell predominant, a B-cell-predominant lymphocytosis raises concern for lymphoma. We present 3 Lyme neuroborreliosis cases in order to illustrate the challenging cytomorphological and immunophenotypic features of their CSF specimens. Three male patients who presented with central nervous system manifestations were diagnosed with Lyme disease. The clinical presentation, laboratory tests, CSF cytological examination and flow-cytometric studies were described for each case. CSF cytology showed lymphocytic pleocytosis with increased plasmacytoid cells and/or plasma cells. Flow cytometry showed the presence of polytypic B lymphocytes with evidence of plasmacytic differentiation in 2 cases. In all cases, Lyme disease was confirmed by the Lyme screening test and Western blotting. In such cases of Lyme neuroborreliosis, flow cytometry of CSF samples employing plasmacytic markers and cytoplasmic light-chain analysis is diagnostically helpful to exclude lymphoma.


Sign in / Sign up

Export Citation Format

Share Document