scholarly journals Birth weight of infants after maternal exposure to typical and atypical antipsychotics: Prospective comparison study

2008 ◽  
Vol 192 (5) ◽  
pp. 333-337 ◽  
Author(s):  
James J. Newham ◽  
Simon H. Thomas ◽  
Karine MacRitchie ◽  
Patricia R. McElhatton ◽  
R. Hamish McAllister-Williams

BackgroundThe effects of in utero exposure to atypical antipsychotics on infant birth weight are unknown.AimsTo determine whether atypical and typical antipsychotics differ in their effects on birth weight after maternal exposure during pregnancy.MethodProspective data on gestational age and birth weight collected by the National Teratology Information Service for infants exposed to typical (n=45) and atypical (n=25) antipsychotics was compared with data for a reference group of infants (n=38).ResultsInfants exposed to atypical antipsychotics had a significantly higher incidence of large for gestational age (LGA) than both comparison groups and a mean birth weight significantly heavier than those exposed to typical antipsychotics. In contrast those exposed to typical antipsychotics had a significantly lower mean birth weight and a higher incidence of small for gestational age infants than the reference group.ConclusionsIn utero exposure to atypical antipsychotic drugs may increase infant birth weight and risk of LGA.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
José G. B. Derraik ◽  
Sarah E. Maessen ◽  
John D. Gibbins ◽  
Wayne S. Cutfield ◽  
Maria Lundgren ◽  
...  

AbstractWhile there is evidence that being born large-for-gestational-age (LGA) is associated with an increased risk of obesity later in life, the data are conflicting. Thus, we aimed to examine the associations between proportionality at birth and later obesity risk in adulthood. This was a retrospective study using data recorded in the Swedish Birth Register. Anthropometry in adulthood was assessed in 195,936 pregnant women at 10–12 weeks of gestation. All women were born at term (37–41 weeks of gestation). LGA was defined as birth weight and/or length ≥2.0 SDS. Women were separated into four groups: appropriate-for-gestational-age according to both weight and length (AGA – reference group; n = 183,662), LGA by weight only (n = 4,026), LGA by length only (n = 5,465), and LGA by both weight and length (n = 2,783). Women born LGA based on length, weight, or both had BMI 0.12, 1.16, and 1.08 kg/m2 greater than women born AGA, respectively. The adjusted relative risk (aRR) of obesity was 1.50 times higher for those born LGA by weight and 1.51 times for LGA by both weight and height. Length at birth was not associated with obesity risk. Similarly, women born LGA by ponderal index had BMI 1.0 kg/m2 greater and an aRR of obesity 1.39 times higher than those born AGA. Swedish women born LGA by weight or ponderal index had an increased risk of obesity in adulthood, irrespective of their birth length. Thus, increased risk of adult obesity seems to be identifiable from birth weight and ignoring proportionality.


Chemosphere ◽  
2007 ◽  
Vol 69 (8) ◽  
pp. 1295-1304 ◽  
Author(s):  
Marjory L. Givens ◽  
Chanley M. Small ◽  
Metrecia L. Terrell ◽  
Lorraine L. Cameron ◽  
Heidi Michels Blanck ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Michael R Hussey ◽  
Amber Burt ◽  
Maya A Deyssenroth ◽  
Brian P Jackson ◽  
Ke Hao ◽  
...  

Abstract Heavy metal exposures, such as cadmium, can have negative effects on infant birth weight (BW)—among other developmental outcomes—with placental dysfunction potentially playing a role in these effects. In this study, we examined how differential placental expression of long non-coding RNAs (lncRNAs) may be associated with cadmium levels in placenta and whether differences in the expression of those lncRNAs were associated with fetal growth. In the Rhode Island Child Health Study, we used data from Illumina HiSeq whole transcriptome RNA sequencing (n = 199) to examine association between lncRNA expression and measures of infant BW as well as placental cadmium concentrations controlled for appropriate covariates. Of the 1191 lncRNAs sequenced, 46 demonstrated associations (q < 0.05) with BW in models controlling for infant sex, maternal age, BMI, maternal education, and smoking during pregnancy. Furthermore, four of these transcripts were associated with placental cadmium concentrations, with MIR22HG and ERVH48-1 demonstrating increases in expression associated with increasing cadmium exposure and elevated odds of small for gestational age birth, while AC114763.2 and LINC02595 demonstrated reduced expression associated with cadmium, but elevated odds of large for gestational age birth with increasing expression. We identified relationships between lncRNA expression with both placental cadmium concentrations and BW. This study provides evidence that disrupted placental expression of lncRNAs may be a part of cadmium’s mechanisms of reproductive toxicity.


2019 ◽  
Vol 10 (5) ◽  
pp. 529-535 ◽  
Author(s):  
J. G. B. Derraik ◽  
D. Pasupathy ◽  
L. M. E. McCowan ◽  
L. Poston ◽  
R. S. Taylor ◽  
...  

AbstractWe assessed whether paternal demographic, anthropometric and clinical factors influence the risk of an infant being born large-for-gestational-age (LGA). We examined the data on 3659 fathers of term offspring (including 662 LGA infants) born to primiparous women from Screening for Pregnancy Endpoints (SCOPE). LGA was defined as birth weight >90th centile as per INTERGROWTH 21st standards, with reference group being infants ⩽90th centile. Associations between paternal factors and likelihood of an LGA infant were examined using univariable and multivariable models. Men who fathered LGA babies were 180 g heavier at birth (P<0.001) and were more likely to have been born macrosomic (P<0.001) than those whose infants were not LGA. Fathers of LGA infants were 2.1 cm taller (P<0.001), 2.8 kg heavier (P<0.001) and had similar body mass index (BMI). In multivariable models, increasing paternal birth weight and height were independently associated with greater odds of having an LGA infant, irrespective of maternal factors. One unit increase in paternal BMI was associated with 2.9% greater odds of having an LGA boy but not girl; however, this association disappeared after adjustment for maternal BMI. There were no associations between paternal demographic factors or clinical history and infant LGA. In conclusion, fathers who were heavier at birth and were taller were more likely to have an LGA infant, but maternal BMI had a dominant influence on LGA.


Reports ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 36
Author(s):  
Jane C. Khoury ◽  
Mekibib Altaye ◽  
Shelley Ehrlich ◽  
Suzanne Summer ◽  
Nicholas J. Ollberding ◽  
...  

Women with pre-gestational diabetes have a high rate of large for gestational age (LGA) babies compared to women without diabetes. In particular, there is a high rate of asymmetric LGA defined as ponderal index (PI) > 90th percentile for gestational age. We examined the association of birth weight and PI, with body mass index (BMI) and obesity status in adulthood, in a cohort of offspring of women with pre-gestational diabetes. The women participated in the Diabetes in Pregnancy (DiP) study at the University of Cincinnati from 1978 to 1995. The offspring of these women are the cohort participating in an observational study being conducted at Cincinnati Children’s Hospital Medical Center. Once located, the offspring were invited to come in for a one-day clinic visit to assess anthropometrics, and their metabolic, renal and cardiovascular status. Linear and logistic regression was used to assess the association between birth weight and PI with current BMI. We report on 107 offspring. A statistically significant association was found between offspring current BMI with birth PI (β = 1.89, 95% CI 0.40–3.38), and between offspring current obesity status and birth asymmetric LGA (aOR = 2.44, 95% CI 1.01–5.82). This is consistent with in utero “metabolic programming”.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sanna Mustaniemi ◽  
Hilkka Nikkinen ◽  
Aini Bloigu ◽  
Anneli Pouta ◽  
Risto Kaaja ◽  
...  

Background: Pre-pregnancy obesity, excess gestational weight gain (GWG), and gestational diabetes (GDM) increase fetal growth. Our aim was to assess whether normal GWG is associated with lower risk for a large-for-gestational-age (LGA; over the 90th percentile of birth weight for sex and gestational age) infant and lower birth weight standard deviation (SD) score in the presence of GDM and maternal obesity.Methods: This multicenter case-control study is part of the Finnish Gestational Diabetes (FinnGeDi) Study and includes singleton pregnancies of 1,055 women with GDM and 1,032 non-diabetic controls. Women were divided into 12 subgroups according to their GDM status, pre-pregnancy body mass index (BMI; kg/m2), and GWG. Non-diabetic women with normal BMI and normal GWG (according to Institute of Medicine recommendations) served as a reference group.Results: The prevalence of LGA birth was 12.2% among women with GDM and 6.2% among non-diabetic women (p &lt; 0.001). Among all women, normal GWG was associated with lower odds of LGA [odds ratio (OR) 0.57, 95% CI: 0.41–0.78]. Among women with both obesity and GDM, the odds for giving birth to a LGA infant was 2.25-fold (95% CI: 1.04–4.85) among those with normal GWG and 7.63-fold (95% CI: 4.25–13.7) among those with excess GWG compared with the reference group. Compared with excess GWG, normal GWG was associated with 0.71 SD (95% CI: 0.47–0.97) lower birth weight SD score among women with GDM and obesity. Newborns of normal weight women with GDM and normal GWG had 0.28 SD (95% CI: 0.05–0.51) lower birth weight SD scores compared with their counterparts with excess GWG. In addition, in the group of normal weight non-diabetic women, normal GWG was associated with 0.46 SD (95% CI: 0.30–0.61) lower birth weight SD scores compared with excess GWG.Conclusion: GDM, obesity, and excess GWG are associated with higher risk for LGA infants. Interventions aiming at normal GWG have the potential to lower LGA rate and birth weight SD scores even when GDM and obesity are present.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Jingjing Wang ◽  
Zeyi Zhang ◽  
Ou Chen

Abstract Background Asthma is a common multifactorial disease affecting millions worldwide. The Barker hypothesis postulates an association between later onset disease risk and energy exposure in utero. Birth weight corrected for gestational age is better for measuring the infant size, which reflects energy exposure in utero. Findings on asthma and birth weight corrected for gestational age have been inconclusive. We conducted a meta-analysis to further clarify the relationship between birth weight corrected for gestational age and later onset asthma. Methods A systematic literature search of the PubMed, Web of Science, MEDLINE, and Scopus databases up to January 2021 was conducted. The subject terms were used as follows: “asthma”, “allerg*”, “respiratory”, “birth weight”, “gestational age”, “birth outcomes”, “intrauterine growth retardation”, and “fetal growth restriction”. Results We included 12 articles with data from a total of 6,713,596 people. Compared with non-SGA infants, infants small for gestation age (SGA) were not associated with an increased risk of asthma (OR = 1.07; 95% CI 0.94–1.21). However, in the subgroup analysis, we found an increased risk of later onset asthma among SGA in studies conducted in Asia, with a large sample size, and defined asthma through medical records rather than questionnaires. Large for gestational age (LGA) was not associated with an increased risk of asthma when non-LGA or appropriated for gestational age (AGA) infants were used as the reference (OR = 1.02; 95% CI 0.90–1.16; OR = 1.01; 95% CI 0.88–1.15). Conclusion These results indicated that neither SGA nor LGA was associated with an increased risk of asthma. However, considering the limitations of the research, these results should be interpreted with caution.


2018 ◽  
Vol 73 (9) ◽  
pp. 1270-1282 ◽  
Author(s):  
Linda Englund-Ögge ◽  
Anne Lise Brantsæter ◽  
Julius Juodakis ◽  
Margareta Haugen ◽  
Helle Margrete Meltzer ◽  
...  

2019 ◽  
Vol 121 (11) ◽  
pp. 1279-1286 ◽  
Author(s):  
Yu-Feng Du ◽  
Yuan Wei ◽  
Jing Yang ◽  
Zi-Yi Cheng ◽  
Xi-Fang Zuo ◽  
...  

AbstractMaternal one-carbon metabolism during pregnancy is crucial for fetal development and programming by DNA methylation. However, evidence on one-carbon biomarkers other than folate is lacking. We, therefore, investigated whether maternal plasma methyl donors, that is, choline, betaine and methionine, are associated with birth outcomes. Blood samples were obtained from 115 women during gestation (median 26·3 weeks, 90 % range 22·7–33·0 weeks). Plasma choline, betaine, methionine and dimethylglycine were measured using HPLC-tandem MS. Multivariate linear and logistic regression models were used to estimate the association between plasma biomarkers and birth weight, birth length, the risk of small-for-gestational-age and large-for-gestational-age (LGA). Higher level of maternal betaine was associated with lower birth weight (–130·3 (95 % CI –244·8, –15·9) per 1 sd increment for log-transformed betaine). Higher maternal methionine was associated with lower risk of LGA, and adjusted OR, with 95 % CI for 1 sd increase in methionine concentration was 0·44 (95 % CI 0·21, 0·89). Stratified analyses according to infant sex or maternal plasma homocysteine status showed that reduction in birth weight in relation to maternal betaine was only limited to male infants or to who had higher maternal homocysteine status (≥5·1 µmol/l). Higher maternal betaine status was associated with reduced birth weight. Maternal methionine was inversely associated with LGA risk. These findings are needed to be replicated in future larger studies.


2019 ◽  
Vol 10 (5) ◽  
pp. 542-554 ◽  
Author(s):  
K. Takagi ◽  
N. Iwama ◽  
H. Metoki ◽  
Y. Uchikura ◽  
Y. Matsubara ◽  
...  

AbstractThis study examines the relationship between paternal height or body mass index (BMI) and birth weight of their offspring in a Japanese general population. The sample included 33,448 pregnant Japanese women and used fixed data, including maternal, paternal and infant characteristics, from the Japan Environment and Children’s Study (JECS), an ongoing nationwide birth cohort study. Relationships between paternal height or BMI and infant birth weight [i.e., small for gestational age (SGA) and large for gestational age (LGA)] were examined using a multinomial logistic regression model. Since fetal programming may be a sex-specific process, male and female infants were analyzed separately. Multivariate analysis showed that the higher the paternal height, the higher the odds of LGA and the lower the odds of SGA in both male and female infants. The effects of paternal BMI on the odds of both SGA and LGA in male infants were similar to those of paternal height; however, paternal height had a stronger impact than BMI on the odds of male LGA. In addition, paternal BMI showed no association with the odds of SGA and only a weak association with the odds of LGA in female infants. This cohort study showed that paternal height was associated with birth weight of their offspring and had stronger effects than paternal BMI, suggesting that the impact of paternal height on infant birth weight could be explained by genetic factors. The sex-dependent effect of paternal BMI on infant birth weight may be due to epigenetic effects.


Sign in / Sign up

Export Citation Format

Share Document