Insurance: Its Role in Recovery from the 2010–2011 Canterbury Earthquake Sequence

2014 ◽  
Vol 30 (1) ◽  
pp. 475-491 ◽  
Author(s):  
Andrew King ◽  
David Middleton ◽  
Charlotte Brown ◽  
David Johnston ◽  
Sarb Johal

Earthquakes generate loss only when assets are near enough to be significantly shaken. When communities are highly insured, much of that loss transfers to the insurer. Many events in the 2010–2011 Canterbury Earthquake Sequence were sufficiently shallow and close to (or under) Christchurch to subject the city to very intense shaking (V: 1.7 g; H: 2.2 g). Shaking damage was extensive, exacerbated by the city's setting wherein the eastern suburbs were built on low-lying flatlands (formerly swamp) where liquefaction was widespread, and the southern suburbs, on the flanks of the now-dormant Lyttelton/Akaroa volcano, experienced boulder roll and landslide effects. There were 17 events in the sequence that resulted in insurance claims. The interval between damaging events was insufficient to enable the widespread damage to be assessed or repaired. Furthermore, the combination of tectonic subsidence and liquefaction ejectile lowered the land surface, creating unacceptable flood risk. This paper provides a snapshot of the most complicated insurance settlement program experienced anywhere.

Author(s):  
Noppadol Phienwej ◽  
Prinya Nutalaya

Bangkok, the capital of Thailand, is situated on flat, low land in the southern part of the Central Plain, one of the main physical units of the country. Through the heart of the city, the Chao Phraya flows from the north and discharges into the Gulf of Thailand, 25 km south of the city centre. The city was founded in 1782, and in its early years numerous klongs (canals) were dug for transportation and defence uses. These canals became corridors of early development, and banks were lined with houses, shop-houses, and temples, etc. With the beauty of its waterway landscape, Bangkok was once dubbed the Venice of the East. Unfortunately, such a resemblance no longer exists as most of the canals have been backfilled to make room for road construction in recent urbanization. The Bangkok metropolis, which at present has a population in excess of 10 million, has expanded rapidly on both banks of the river since 1950. It has encroached into surrounding provinces, covering an area of approximately 60 × 70 km. Owing to its flat topography and close proximity to the sea, flooding threatens the city annually. Modern urbanization has resulted in the drastic destruction or blockage of natural drainage paths, increasing the flood risk to the city. Severe land subsidence from excessive groundwater extraction since the 1960s has intensified the flood risk, as well as creating numerous foundation problems. At present the land surface in some areas is already below mean sea level. The city now has to rely on a flood protection system to prevent inundation. However, its effectiveness is only temporary because land subsidence has not yet ceased. The Central Plain is formed by the Chao Phraya River, the largest in the country. The river basin stretches from the Northern Highland to the Central Plain and covers about one-third of the country (514 000 km2). The Central Plain can be divided into the Upper and Lower Central Plains. The former extends from Tak to Nakhon Sawan Provinces. Four main rivers, namely, the Ping, the Wang, the Yom, and the Nan, which originate in the Northern Highland, traverse the plain and join together at Nakhon Sawan, 240 km north of Bangkok, to form the Chao Phraya River.


2014 ◽  
Vol 30 (1) ◽  
pp. 111-129 ◽  
Author(s):  
Liam M. Wotherspoon ◽  
Rolando P. Orense ◽  
Mike Jacka ◽  
Russell A. Green ◽  
Brady R. Cox ◽  
...  

The city of Christchurch and the surrounding region on the South Island of New Zealand are underlain by large areas of recent alluvial sediments and fills that are highly susceptible to liquefaction and seismic ground failure. Thus, the widespread liquefaction that occurred following the successive large-scale earth-quakes, with moment magnitudes (MW) ranging from 6.0 to 7.1 that struck the Canterbury region in 2010–2011 was expected. Prior to the series of earthquakes, soil improvement had been used at several sites to mitigate the anticipated damage. This paper reviews the performance of improved sites during the Canterbury earthquake sequence. The existing soil conditions at each site and the design of the ground improvement are discussed, together with descriptions of the post-earthquake damage observed. Moreover, liquefaction assessment within and surrounding a selection of the ground improvement zones is presented.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 963 ◽  
Author(s):  
Moshe Mandelmilch ◽  
Michal Ferenz ◽  
Noa Mandelmilch ◽  
Oded Potchter

This study aims to examine the effect of urban spatial patterns on heat exposure in the city of Tel Aviv using multiple methodologies, Local Climate Zones (LCZ), meteorological measurements, and remote sensing. A Local Climate Zone map of Tel Aviv was created using Geographic Information System (GIS), and satellite images were used to identify the spatial patterns of the urban heat island (UHI). Climatic variables were measured by fixed meteorological stations and by mobile cross-section. Surface and wall temperatures were obtained by satellite images and a hand-held infrared camera. Meteorological measurements at a height of 2 m showed that during midday the city is ~3.6 °C warmer than the surrounding rural area. The cooling effect of parks was evident only during the hot hours of the day (9:00–17:00). Land Surface Temperature in the southern part of the city was hotter by ~7–9 °C compared to the northern part due to lack of urban vegetation. Hot spots were found in compact midrise forms (LCZ 2) that are not ideal from the climatological perspective. Whereas compact low-rise forms (LCZ 3) were less heat vulnerable. The results of this study suggest that climatologists can provide planners and architects with scientific insight into the causes of and solutions for urban climatic heat exposure.


2013 ◽  
Vol 196 (1) ◽  
pp. 473-480 ◽  
Author(s):  
Sandy Steacy ◽  
Abigail Jiménez ◽  
Caroline Holden

2022 ◽  
Author(s):  
Ali Mohammadpourzeid ◽  
Bohloul Alijani ◽  
Mehry Akbary ◽  
Parviz Zeaieanfirouzabadi

Abstract Land surface temperature (LST) is one of the key parameters in hydrology, meteorology, and the surface energy balance.The one-window algorithm of Kim et al. Uses Landsat satellite imagery to model the earth's surface temperature.These trends are validated using meteorological data. Two main and basic factors play a major role in the temporal and spatial trend of the thermal islands of Rasht. These two factors of climate change that have occurred in the last two decades in the region of Gilan province and the city of Rasht. The second factor that has greatly enhanced the effect of the first factor is the human factor that has greatly included other urban factors in Rasht, including urban management and proper urban planning in the province and the city of Rasht. These two factors in the temporal and spatial trend of urban thermal islands have caused thermal islands to rapidly increase the growth of the city and urban population from the urban center to the western and southwestern regions and have very negative effects on land use changes and human areas. It has caused the construction of Rasht city.


2015 ◽  
Vol 4 (2) ◽  
pp. 68-71
Author(s):  
Marina Yuryevna Garitskaya ◽  
Alina Ivanovna Baitelova ◽  
Ludmila Andreevna Pikus ◽  
Kristina Andreevna Kosacheva

Soil, performing a number of important functions is the geomembrane and affects the flow of most processes in the biosphere. Wherein geochemical processes occurring in the soil play an important role in the fate of contaminants as organic matter while controlling their redistribution in the ecosystem between its various components are generally leads to the formation of stable areas of contamination. The soil not only geochemically components accumulates contaminants, but also acts as a natural buffer that controls the transfer of chemical elements and compounds in the atmosphere. Around industrial enterprises formed geochemical anomalies with high content of pollutants, which can reach a radius of 10-50 km, and the impact of large industrial centers can be traced to a distance of 100 km. All known processes of metal accompanied by the formation of large amounts of waste that pollutes air, water and land surface. Mechanical engineering is an important industry of the Orenburg region and is represented by enterprises of the military-industrial complex, agricultural machinery, machine tools, equipment for ferrous and non-ferrous metals, vehicles, electric household appliances. In the machine-building complex of the Orenburg region includes more than 70 large enterprises. The share of engineering products in the volume of industrial production is about 8%. In this case, the natural environment of the city of Orenburg slabozaschischena from most adverse geo-environmental factors. Based on this, we carried out a study on the quality of soil and environmental situation prevailing in the city of Orenburg, in the zone of influence of the enterprise Plant drilling equipment.


2018 ◽  
Vol 14 (18) ◽  
pp. 110 ◽  
Author(s):  
Meriam Lahsaini ◽  
Hassan Tabyaoui

The city of Sefrou, because of its geographical position, its cultural heritage and urban planning, than economically, is classified as one of the sites with a vulnerability particular to floods. Oued Aggay, the subject of this study, constitutes a danger potential because of the violence of its floods. In this perspective that comes this study that part of the creation and management of a spatial database on flood risk in the Sebou basin. It aims to spatialize the extent of the floods of Oued Aggay and propose solutions to protection the city of Sefrou against floods. The chosen approach goes through a hydrological study, the choice of profiles and the construction of onedimensional model from HEC RAS hydrology software. This study allowed us to simulate floods by statistical methods, identify flood zones and determine the different water levels in the flooded area for the Oued Aggay watershed.


Sign in / Sign up

Export Citation Format

Share Document