Relationship of the p75 neurotrophin receptor (p75NTR) and hypoxic response and treatment resistance in malignant gliomas.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13026-e13026
Author(s):  
Rajappa Kenchappa ◽  
Peter A. J. Forsyth

e13026 Background: Malignant gliomas (MGs) are resistant to Radiotherapy (RT). The molecular pathways that produce resistance to therapy and ability to tolerate hypoxia are poorly understood. We previously found that the p75NTR causes invasion & proliferation of MGs/Brain Tumor Initiating Cells (BTICs). We think MGs use the neurotrophin-rich brain environment as a survival advantage to resist treatment by expressing the p75NTR. We hypothesize that hypoxia cause p75NTR proteolysis which produces HIF-1α stabilization and activation of hypoxic responses. This repertoire of hypoxic responses leads to resistance to both hypoxia & radiotherapy (RT) and account for MG recurrence. Methods: We used glioma cells and BTICs they express very low or and high levels of p75NTR and manipulated the expression of p75NTR by shRNAs and activation by mutant receptors and pharmacological inhibitors. We exposed these cells to hypoxia and radiation treatment and performed biochemical and functional assays. We have also used paired pre and post-RT frozen patient specimens. Gene expression profiles were analyzed for patients using microarray expression data for 516 primary GBM patients from the TCGA and 239 patients from Moffitt’s Total Cancer Care (TCC) project. Results: We found that inhibiting p75NTR pharmacologically significantly reduced invasion/proliferation of MGs/BTICs in vitro & in vivo. We have also found that p75NTR is required for HIF-1α stabilization and VEGF expression in MGs/BTICs in vitro & in vivo, that p75NTR expressing MGs/BTICs are very resistant to hypoxia & RT in vitro, and these effects are reversed with inhibition of p75NTR signaling. In addition, p75NTR expression and its cleavage are associated with treatment resistance in patient specimens. We also found using TCGA and Moffitt patient specimen data that the p75NTR/Siah2/PHD axis is expressed in MG patients and associated with RT resistance/poor prognosis. Conclusions: These results suggest that p75NTR expression/cleavage are required for HIF-1α pathway activation and hence the phenotype of MGs/BTICs and their treatment resistance. Targeting the p75NTR signaling axis therefore will provide novel therapeutic approaches.

2019 ◽  
Vol 21 (8) ◽  
pp. 993-1004 ◽  
Author(s):  
Boonmin Poh ◽  
Hideto Koso ◽  
Hiroyuki Momota ◽  
Takashi Komori ◽  
Yutaka Suzuki ◽  
...  

Abstract Background Embryonal tumors in the central nervous system (CNS) are primary, aggressive, and poorly differentiated pediatric brain tumors. We identified forkhead box R2 (Foxr2) as an oncogene for medulloblastoma through a transposon-based insertional mutagenesis screen. Foxr2 translocation has been identified in a subset of human embryonal tumors of the CNS, designated as CNS neuroblastoma with Foxr2 activation (CNS NB-Foxr2); however, the in vivo functions of Foxr2 remain elusive. Methods We analyzed the effect of Foxr2 overexpression in the mouse brain by generating a transgenic strain that expresses Foxr2 in the entire brain under a transformation related protein 53 (Trp53)–deficient background. We performed histological analysis of tumors and characterized tumor-derived sphere-forming cells. We investigated gene expression profiles of tumor-derived cells. Results Foxr2 and Trp53 loss promoted tumor formation in the olfactory bulb (OB) and brainstem (BS). The tumors showed the common morphological features of small round blue cell tumors, exhibiting divergent, mainly neuronal and glial, patterns of differentiation, which corresponds to the definition of CNS-embryonal tumors. Importantly, all mice developed CNS-embryonal tumors. In the OB, early proliferative lesions consisting of oligodendrocyte transcription factor 2 (Olig2+) cells were observed, indicating that Foxr2 expression expanded Olig2+ cells in the OB. Tumor-derived cells formed spheres in vitro and induced tumors that recapitulated the parental tumor upon transplantation, indicating the presence of tumor-initiating cells. Gene expression profiling revealed that OB and BS tumor cells were enriched for the expression of the genes specific to CNS NB-Foxr2. Conclusion Our data demonstrate that Foxr2 plays a causative role in the formation of CNS-embryonal tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. e66-e73 ◽  
Author(s):  
Chih-Wen Ni ◽  
Haiwei Qiu ◽  
Amir Rezvan ◽  
Kihwan Kwon ◽  
Douglas Nam ◽  
...  

Abstract Recently, we showed that disturbed flow caused by a partial ligation of mouse carotid artery rapidly induces atherosclerosis. Here, we identified mechanosensitive genes in vivo through a genome-wide microarray study using mouse endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery. We found 62 and 523 genes that changed significantly by 12 hours and 48 hours after ligation, respectively. The results were validated by quantitative polymerase chain reaction for 44 of 46 tested genes. This array study discovered numerous novel mechanosensitive genes, including Lmo4, klk10, and dhh, while confirming well-known ones, such as Klf2, eNOS, and BMP4. Four genes were further validated for protein, including LMO4, which showed higher expression in mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hours, followed by inflammatory and immune responses by 48 hours. Determining the functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.


2012 ◽  
Vol 9 (77) ◽  
pp. 3288-3302 ◽  
Author(s):  
Neha Arya ◽  
Viren Sardana ◽  
Meera Saxena ◽  
Annapoorni Rangarajan ◽  
Dhirendra S. Katti

Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan–gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell–ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo . Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Marie Lue Antony ◽  
Klara Noble-Orcutt ◽  
Yoonku Lee ◽  
Oluwateniayo Ogunsan ◽  
Jeffrey Lee Jensen ◽  
...  

In acute myeloid leukemia (AML), the impact of genetic drivers on response to therapy and long-term survival has been well characterized. AML with complex cytogenetics and TP53 alterations (TP53Alt) is a poor-risk AML subtype that is largely insensitive to chemotherapy, modern targeted agents, and hematopoietic stem cell transplant leading to survival rates 0-10% at 1 year. In contrast, AML with favorable risk molecular features is highly sensitive to chemotherapy and confers survival rates of 50-70%. AML with intermediate risk molecular features can be responsive to chemotherapy and can be cured with hematopoietic stem cell transplant leading to overall survival rates of 30-60%. Leukemia stem cells (LSCs), the cells that recapitulate and propagate leukemia, are central to leukemia progression and relapse. Given the differences in chemo-sensitivity and clinical behavior of genetic subgroups of AML, we asked whether LSCs from poor risk AMLs exhibit distinct signaling activation profiles. We assembled a panel of 23 primary human AML samples with intermediate- and poor- risk genetics and used CyTOF (mass cytometry) to quantitatively measure the levels of immunophenotypic proteins and intracellular signaling molecules in each sample, at the single-cell level. We gated on CD34+CD123+CD3-CD19- cells (LSCs) and measured the level of intracellular signaling molecules within the LSCs of each sample. Notably, the intracellular signaling activation state of LSCs from each AML subtype was distinct; NFkB, pERK, p4EBP1, and pSTAT3 were uniquely upregulated in complex cytogenetics and TP53Alt LSCs, relative to LSCs from intermediate risk AML, suggesting that these signaling pathways may be important for LSC function in this AML subtype. Given that TP53Alt independently confer treatment resistance in AML, we focused on this genetic subgroup. We compared the gene expression profiles of TP53Alt and TP53-wild-type AML samples from the BEAT AML dataset (Tyner et al. Nature 2018) and found that the gene expression profiles of TP53Alt samples are enriched for gene sets representing JAK/STAT signaling, consistent with our CyTOF data, which identified activation of STAT3 in TP53Alt LSCs. A recent drug screen in AML demonstrated that a JAK1/2 kinase inhibitor, AZD1480, can reduce the in vitro viability of TP53-deleted AML cell lines (Nechiporuk et al. Ca Discovery 2019), but these effects were not tested in primary AML samples or on LSCs. Since LSCs confer treatment resistance, we investigated the effect of the AZD1480 on the LSC population in TP53Alt primary human AML samples. AZD1480 treatment abolished all colony formation in primary human TP53Alt AML samples (n=7, 6 replicates per sample, p<0.01). Treatment of these samples in liquid cultures led to a 50% reduction in LSC frequency. We used CyTOF to profile the intracellular signaling states of in vitro treated samples and found that AZD1480 attenuated pSTAT3, pSTAT5, p4EBP1, and NFkB in the LSCs of these samples. The mTOR/4EBp1 and NF༆B pathways have been implicated as drivers of self-renewal and LSC function in AML. Our data suggest that JAK/STAT inhibition may target these pathways in TP53Alt LSCs. These data demonstrate the unique signaling states of TP53Alt LSCs, relative to other LSCs, and show that inhibition of the JAK/STAT pathway specifically targets LSCs within human TP53Alt AML. Figure Disclosures No relevant conflicts of interest to declare.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1039
Author(s):  
Hana S. Fukuto ◽  
Gloria I. Viboud ◽  
Viveka Vadyvaloo

Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.


2006 ◽  
Vol 25 (5) ◽  
pp. 379-395 ◽  
Author(s):  
Gisela Werle-Schneider ◽  
Andreas Wölfelschneider ◽  
Marie Charlotte von Brevern ◽  
Julia Scheel ◽  
Thorsten Storck ◽  
...  

Transcription profiling is used as an in vivo method for predicting the mode-of-action class of nongenotoxic carcinogens. To set up a reliable in vitro short-term test system DNA microarray technology was combined with rat liver slices. Seven compounds known to act as tumor promoters were selected, which included the enzyme inducers phenobarbital, α-hexachlorocyclohexane, and cyproterone acetate; the peroxisome proliferators WY-14,643, dehydroepiandrosterone, and ciprofibrate; and the hormone 17 α-ethinylestradiol. Rat liver slices were exposed to various concentrations of the compounds for 24 h. Toxicology-focused TOXaminer™ DNA microarrays containing approximately 1500 genes were used for generating gene expression profiles for each of the test compound. Hierarchical cluster analysis revealed that (i) gene expression profiles generated in rat liver slices in vitro were specific allowing classification of compounds with similar mode of action and (ii) expression profiles of rat liver slices exposed in vitro correlate with those induced after in vivo treatment (reported previously). Enzyme inducers and peroxisome proliferators formed two separate clusters, confirming that they act through different mechanisms. Expression profiles of the hormone 17 α-ethinylestradiol were not similar to any of the other compounds. In conclusion, gene expression profiles induced by compounds that act via similar mechanisms showed common effects on transcription upon treatment in vivo and in rat liver slices in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3372-3372
Author(s):  
Ashish R. Kumar ◽  
Robert K. Slany ◽  
Jay L. Hess ◽  
John H. Kersey

Expression profiling has become an important tool for understanding gene deregulation in MLL-fusion leukemias. However, the results of gene profiling experiments are difficult to interpret when applied to leukemia cells because (i) leukemias arise in cells that differ greatly in their gene expression profiles, and (ii) leukemias most often require secondary genetic events in addition to the MLL fusion gene. Two principal model systems have been used to understand the direct effects of MLL-fusion genes. Knock-in models have the advantage of the fusion gene being under control of the physiologic promoter. On the other hand, conditional expression systems offer the ability to conduct short term experiments, permitting the analysis of direct effects on downstream genes. In the present combined-analysis, we used the Affymetrix U74Av2 oligonucleotide microarray to evaluate the effects of the MLL-fusion gene in vivo and in vitro respectively using two closely related MLL fusion genes - MLL-AF9 for knock-in and MLL-ENL for conditional expression. In the MLL-AF9 study, we compared gene expression profiles of bone marrow cells from MLL-AF9 knock-in mice (C57Bl/6, MLL-AF9+/−) to those of age-matched wild type mice (Kumar et. al. 2004, Blood). We used a t-test (p<0.05) to selected genes that showed significant changes in expression levels. In the MLL-ENL study, we transformed murine primary hematopoietic cells with a conditional MLL-ENL vector (MLL-ENL fused to the modified ligand-binding domain of the estrogen receptor) such that the fusion protein was active only in the presence of tamoxifen. We then studied the downstream effects of the fusion protein by comparing gene expression profiles of the cells in the presence and absence of tamoxifen. We used a pair-wise comparison analysis to select genes that showed a change in expression level of 1.5 fold or greater in at least two of three experiments (Zeisig et. al. 2004, Mol. Cell Biol.). Those genes that were up-regulated in both datasets were then compiled together. This list included Hoxa7, Hoxa9 and Meis1. The results for these 3 genes were confirmed by quantitative RT-PCR in both the MLL-AF9-knock-in and the MLL-ENL-conditional-expression systems. The remaining candidate genes in the common up-regulated gene set (not yet tested by quantitative RT-PCR) include protein kinases (Bmx, Mapk3, Prkcabp, Acvrl1, Cask), RAS-associated proteins (Rab7, Rab3b), signal transduction proteins (Notch1, Eat2, Shd, Fpr1), cell membrane proteins (Igsf4), chaperones (Hsp70.2), transcription factors (Isgf3g), proteins with unknown functions (Olfm1, Flot1), and hypothetical proteins. The results of the combined analysis demonstrate that these over-expressions are (i) a direct and sustained effect of the MLL-fusion protein, (ii) are independent of secondary events that might be involved in leukemogensis, and (iii) are independent of the two partner genes that participate in these fusions. The over-expression of a few genes in both the -in vitro and in vivo experimental systems makes these molecules very interesting for further studies, to understand the biology of MLL-fusion leukemias and for development of new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document