Liquid biopsy leads to a paradigm shift in cancer treatment.

2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 602-602
Author(s):  
Koichi Suzuki ◽  
Yuji Takayama ◽  
Kosuke Ichida ◽  
Taro Fukui ◽  
Nao Kakizawa ◽  
...  

602 Background: Liquid biopsy represents an ideal non-invasive tool allowing multiple testing over time, monitoring real time changes occurring within the tumor and evaluation of therapeutic response. Here we show monitoring of KRAS mutation in detection of circulating tumor DNA (ctDNA) during treatments for metastatic colorectal cancer patients (pts). Methods: 238 plasma samples were collected from 57 pts who underwent chemotherapy. KRAS mutant ctDNA (MctDNA) was determined by digital PCR as a tool of Liquid biopsy, detecting rare mutant clones in blood. Results: KRAS assessment in tumor tissues showed 19 pts with mutation (M) and 38 without mutation (W). Among 19 pts with M, 12 pts displayed MctDNA at the initial assessment and 7 pts showed no MctDNA. Then, one (M*) of 7 pts exhibited MctDNA during treatments. While 38 pts with W showed no MctDNA before chemotherapy except one pt (M**), 4 pts exhibited MctDNA after treatments with different regimens. MctDNA was detectable in the blood of these 4 pts prior to radiographic detection of disease progression. Regardless of KRAS status in tumor tissues, poor response was seen in pts with MctDNA. Conclusions: Liquid biopsy provides us a circulating biomarker for monitoring treatment response and choice of optimal regimens. [Table: see text]

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hideaki Kinugasa ◽  
Sakiko Hiraoka ◽  
Kazuhiro Nouso ◽  
Shumpei Yamamoto ◽  
Mami Hirai ◽  
...  

Abstract Background It is often difficult to diagnose inflammatory bowel disease (IBD)-associated neoplasia endoscopically due to background inflammation. In addition, due to the absence of sensitive tumor biomarkers, countermeasures against IBD-associated neoplasia are crucial. The purpose of this study is to develop a new diagnostic method through the application of liquid biopsy. Methods Ten patients with IBD-associated cancers and high-grade dysplasia (HGD) with preserved tumor tissue and blood were included. Tumor and non-tumor tissues were analyzed for 48 cancer-related genes using next-generation sequencing. Simultaneously, circulating tumor DNA (ctDNA) was analyzed for mutations in the target genes using digital PCR. Results Out of 10 patients, seven had IBD-related cancer and three had IBD-related HGD. Two patients had carcinoma in situ; moreover, three had stageII and two had stage III. To avoid false positives, the mutation rate cutoff was set at 5% based on the control results; seven of 10 (70%) tumor tissue samples were mutation-positive. Mutation frequencies for each gene were as follows: TP53 (20.9%; R136H), TP53 (25.0%; C110W), TP53 (8.5%; H140Q), TP53 (31.1%; R150W), TP53 (12.8%; R141H), KRAS (40.0%; G12V), and PIK3CA (34.1%; R 88Q). The same mutations were detected in the blood of these seven patients. However, no mutations were detected in the blood of the remaining three patients with no tumor tissue mutations. The concordance rate between tumor tissue DNA and blood ctDNA was 100%. Conclusion Blood liquid biopsy has the potential to be a new method for non-invasive diagnosis of IBD-associated neoplasia.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexis Overs ◽  
Mylène Flammang ◽  
Eric Hervouet ◽  
Laurent Bermont ◽  
Jean-Luc Pretet ◽  
...  

Abstract Background In oncology, liquid biopsy is of major relevance from theranostic point of view. The searching for mutations in circulating tumor DNA (ctDNA) in case of colorectal cancers (CRCs) allows the optimization of patient care. In this context, independent of mutation status biomarkers are required for its detection to confirm the presence of ctDNA in liquid biopsies. Indeed, the hypermethylation of NPY and WIF1 genes appear to be an ideal biomarker for the specific detection of ctDNA in CRCs. The objective of this work is to develop the research of hypermethylation of NPY and WIF1 by Crystal Digital PCR™ for the detection of ctDNA in CRCs. Methods Detection of hypermethylated NPY and WIF1 was developed on Cristal digital PCR™. Biological validation was performed from a local cohort of 22 liquid biopsies and 23 tissue samples from patients with CRC. These patients were treated at the University Hospital of Besancon (France). Results The local cohort study confirmed that NPY and WIF1 were significantly hypermethylated in tumor tissues compared to adjacent non-tumor tissues (WIF1 p < 0.001; NPY p < 0.001; non-parametric Wilcoxon paired-series test). Histological characteristics, tumor stages or mutation status were not correlated to the methylation profiles. On the other hand, hypermethylation of NPY or WIF1 in liquid biopsy had a 95.5% [95%CI 77–100%] sensitivity and 100% [95%CI 69–100%] specificity. Conclusion Using Crystal digital PCR™, this study shows that hypermethylation of NPY and WIF1 are constant specific biomarkers of CRCs regardless of a potential role in carcinogenesis.


2021 ◽  
Vol 14 (2) ◽  
pp. 128
Author(s):  
Silvia Galbiati ◽  
Francesco Damin ◽  
Dario Brambilla ◽  
Lucia Ferraro ◽  
Nadia Soriani ◽  
...  

It is widely accepted that assessing circular tumor DNA (ctDNA) in the plasma of cancer patients is a promising practice to evaluate somatic mutations from solid tumors noninvasively. Recently, it was reported that isolation of extracellular vesicles improves the detection of mutant DNA from plasma in metastatic patients; however, no consensus on the presence of dsDNA in exosomes has been reached yet. We analyzed small extracellular vesicle (sEV)-associated DNA of eleven metastatic colorectal cancer (mCRC) patients and compared the results obtained by microarray and droplet digital PCR (ddPCR) to those reported on the ctDNA fraction. We detected the same mutations found in tissue biopsies and ctDNA in all samples but, unexpectedly, in one sample, we found a KRAS mutation that was not identified either in ctDNA or tissue biopsy. Furthermore, to assess the exact location of sEV-associated DNA (outside or inside the vesicle), we treated with DNase I sEVs isolated with three different methodologies. We found that the DNA inside the vesicles is only a small fraction of that surrounding the vesicles. Its amount seems to correlate with the total amount of circulating tumor DNA. The results obtained in our experimental setting suggest that integrating ctDNA and sEV-associated DNA in mCRC patient management could provide a complete real-time assessment of the cancer mutation status.


2020 ◽  
Vol 12 ◽  
pp. 175883592098135
Author(s):  
Irene López-Rojo ◽  
Susana Olmedillas-López ◽  
Pedro Villarejo Campos ◽  
Víctor Domínguez Prieto ◽  
Javier Barambio Buendía ◽  
...  

Background: Positive cytology has been identified as an independent negative prognostic factor in patients with peritoneal metastases (PM) of colorectal origin. Liquid biopsy in plasma may detect increasing levels of circulating tumor DNA (ctDNA) and could help predict systemic relapse in patients with colorectal cancer, but little is known about the role of liquid biopsy in peritoneal fluid. The aim of this study was to evaluate the prognostic value of peritoneal fluid and plasma liquid biopsy in patients undergoing complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CC-HIPEC). Methods: A longitudinal prospective study was designed in patients with KRAS-mutated colorectal or appendiceal primary tumor, including PM of colorectal origin, pseudomyxoma peritonei and patients at high risk of developing PM (selected for second-look surgery). Eleven patients were recruited according to inclusion and exclusion criteria. ctDNA from plasma and peritoneal fluid before and after HIPEC was studied by droplet digital PCR looking for KRAS mutation. A close follow-up was scheduled (mean of 28.5 months) to monitor for systemic and peritoneal recurrences. Results: All patients with positive plasma postHIPEC had systemic relapse and four patients died as a result, while those with negative plasma postHIPEC did not relapse. Patients with negative peritoneal ctDNA after CC-HIPEC did not present peritoneal relapse. Of six patients with positive peritoneal ctDNA postHIPEC, two presented peritoneal recurrence and four systemic relapses. Conclusions: Treatment with CC-HIPEC does not always neutralize ctDNA in peritoneal fluid, and its persistence after treatment may predict adverse outcome. Despite being a proof of concept, an adequate correlation between liquid biopsy in plasma and peritoneal fluid with both systemic and peritoneal relapse has been observed.


2018 ◽  
Vol 64 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Charles Decraene ◽  
Amanda B Silveira ◽  
François-Clément Bidard ◽  
Audrey Vallée ◽  
Marc Michel ◽  
...  

Abstract BACKGROUND Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. METHODS We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. RESULTS The KRAS and EGFR assays were highly specific and both reached a limit of detection of &lt;0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. CONCLUSIONS This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 785
Author(s):  
Ákos Nagy ◽  
Bence Bátai ◽  
Alexandra Balogh ◽  
Sarolta Illés ◽  
Gábor Mikala ◽  
...  

Recent advances in molecular technologies enable sensitive and quantitative assessment of circulating tumor DNA, offering a noninvasive disease monitoring tool for patients with malignant disorders. Here, we demonstrated on four follicular lymphoma cases that circulating tumor DNA based EZH2 mutation analysis performed by a highly sensitive droplet digital PCR method may be a valuable treatment monitoring approach in EZH2 mutant follicular lymphoma. EZH2 variant allele frequencies changed in parallel with the volume of metabolically active tumor sites observed on 18F-fluorodeoxyglucose positron emission tomography combined with computer tomography (PET-CT) scans. Variant allele frequencies of EZH2 mutations decreased or were eliminated rapidly upon successful treatment, with treatment failure being associated with elevated EZH2 variant allele frequencies. We also demonstrated spatial heterogeneity in a patient with two different EZH2 mutations in distinct anatomical sites, with both mutations simultaneously detected in the liquid biopsy specimen. In summary, circulating tumor DNA based EZH2 mutation analysis offers a rapid, real-time, radiation-free monitoring tool for sensitive detection of EZH2 mutations deriving from different anatomical sites in follicular lymphoma patients receiving immunochemotherapy.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23025-e23025
Author(s):  
Yuji Takayama ◽  
Koichi Suzuki ◽  
Kosuke Ichida ◽  
Taro Fukui ◽  
Fumiaki Watanabe ◽  
...  

e23025 Background: Emergence of KRAS mutation in blood is observed in colorectal cancer patients who undergo chemotherapy, but its clinical significance is not well known. In this study, we focused on the difference in appearance of KRAS mutated circulating tumor DNA (MctDNA) and elucidated its association with treatments. Methods: Four hundred and fifty-one plasma samples were collected prospectively from 85 patients (pts) who underwent chemotherapy due to metastatic colorectal cancer in 2014 - 2016. Seven types of KRAS mutation in MctDNA were detected by droplet digital PCR creating oil droplets. To exclude false positive detection, mutation was validated. MctDNA amplified in oil droplets was selectively sorted by On-chip sorting system and mutation was determined by Sanger sequencing. Results: KRAS assessment in tumor tissues showed 29 pts with KRAS mutation (MT), 56 pts without KRAS mutation (WT). Among 29 pts with MT, KRAS assessment in plasma displayed 23 pts with MctDNA and 6 pts without MctDNA. The type of mutation in MctDNA was consistent with that detected in tumor tissues, indicating mutual exclusivity in KRAS mutation was confirmed. In 56 pts with WT, 28 pts showed MctDNA during treatments. Difference in appearance of MctDNA was recognized in several treatments. Gradual increase in detection of MctDNA was observed with anti-EGFR antibody, resulted in treatment resistance. Transient spike elevation was frequently seen in TAS-102, which associated with drug response. No specific appearance was recognized during treatments with other drugs including anti-VEGF antibody. MctDNA in oil droplets were successfully sorted even if a few droplets were targeted, and mutation was confirmed. Conclusions: Difference in appearance of MctDNA may associate with treatment response in patients with metastatic colorectal cancer during treatments. [Table: see text]


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 156-156
Author(s):  
Pedro C. Barata ◽  
Umang Swami ◽  
Adam Kessel ◽  
Ellen Jaeger ◽  
Sergiusz Wesolowski ◽  
...  

156 Background: AA have substantially higher prostate cancer incidence rates, are diagnosed at a younger age and with a more advanced stage as compared to Ca. However, after adjusting for known prognostic factors, AA have an increased overall survival. We hypothesized that these differences might be due to the underlying changes in the genomic landscape which can be revealed by liquid biopsy. Methods: Real world comprehensive genomic profiling of ctDNA from aPCa patients from two institutions. The first ctDNA results as reported by Guardant 360 panel (Redwood City, CA) were included. Association between genetic mutation and gene were tested using Barnard’s test. To account for multiple testing, we used Benjamini-Hochberg’s False Discovery Rate adjustment across all tests to determine thresholds for false discovery rates. Same analysis was performed using a Bayesian Network Machine learning approach. Results: Overall, 361 patients with aPCa (81 AA and 280 Ca) were included in the analysis. Pathogenic genomic alterations were found in 87.0% of the cases, more frequently TP53 (42.4%), AR (34.1%), PIK3CA (13.9%), BRAF (12.7%), NF1 (10.8%) and MYC (10.0%). Targetable alterations of interest included DNA repair genes [BRCA 2 (7.8%), BRCA 1 (4.4%), ATM (6.4%), CDK12 (2.2%)], PIK3CA/mTOR/AKT (19.1%), PTEN (3.3%) and NTRK (1.9%). MSI-high was found in 4 patients. AA as compared to Ca had a significantly higher prevalence of CDK12 (20.7% vs. 3.8%, p=0.016) and GNA11 mutations (3.7% vs. 0.4%, p=0.0225). BayesNet analysis also supported these results (table). Conclusions: In this dataset, liquid biopsy of ctDNA was useful for genetic characterization of aPCa and reveal differences in the molecular phenotype of AA and Ca in aPCa with potential clinical implications. These findings support ongoing research on the clinical utility of non-invasive genotyping and therapeutic response monitoring with a focus on AA population. [Table: see text]


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4581
Author(s):  
Jin-Yi Han ◽  
Keun Soo Ahn ◽  
Tae-Seok Kim ◽  
Yong Hoon Kim ◽  
Kwang Bum Cho ◽  
...  

Although liquid biopsy of blood is useful for cancer diagnosis and prediction of prognosis, diagnostic and prognostic value of ctDNA in bile fluid for BTCs are not clear yet. To determine whether liquid biopsy for circulating tumor DNA (ctDNA) can replace tissue biopsy when assessing somatic mutations in biliary tract cancers (BTCs). Bile samples were obtained from 42 patients with BTC. Matched formalin-fixed paraffin-embedded (FFPE) samples were obtained from 20 of these patients and matched plasma samples from 16 of them. Droplet digital PCR (ddPCR) was used for detection KRAS somatic mutation. KRAS mutations were identified in the bile ctDNA of 20 of 42 (48%) patients. Patients with mutant KRAS showed significantly worse survival than those with wild-type KRAS (2-year survival rates: 0% vs. 55.5%, respectively; p = 0.018). There was 80.0% mutational concordance between the paired bile ctDNA and FFPE samples, and 42.9% between the plasma and FFPE samples. On transcriptomic sequencing of one set of paired bile and FFPE samples, expression level of KRAS-associated signaling oncogenes in the bile and tissue samples showed a strong positive correlation (r = 0.991, p < 0.001). Liquid biopsy of bile reliably detect mutational variants within the bile ctDNA of BTC patients. These results suggest that bile is an effective biopsy fluid for ctDNA analysis.


Sign in / Sign up

Export Citation Format

Share Document