Radiosensitization of androgen receptor (AR)-positive triple-negative breast cancer (TNBC) cells using seviteronel (SEVI), a selective CYP17 lyase and AR inhibitor.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e12102-e12102 ◽  
Author(s):  
Corey Wayne Speers ◽  
Benjamin Chandler ◽  
Shuang Zhao ◽  
Meilan Liu ◽  
Kari Wilder-Romans ◽  
...  

e12102 Background: Increased rates of locoregional recurrence have been observed in TNBC despite chemotherapy and radiation (RT). A novel radiosensitizer screen nominated the AR as a promising target for treatment of radioresistant breast cancer, including TNBC. We assessed in vitro activity of SEVI (VT-464), a selective CYP17 lyase and AR inhibitor, as a potential radiosensitizer in AR+ TNBC model. Methods: Clonogenic survival assays were used to determine the intrinsic RT sensitivity of 21 breast cancer cell (BCC) lines. IC50 values were determined for 130 clinically available compounds and correlation coefficients were calculated using IC50 values and SF-2Gy. Gene expression was measured using RNA Seq or qRT-PCR and protein expression was measured using RPPA arrays. AR function was assessed using functional inhibition with SEVI in MDA-MB-453, ACC-460, SUM-185 (all three AR+ TNBC), MDA-MB-231 (AR- TNBC), and T47D (AR- ER+) BCC lines. Double-stranded DNA (dsDNA) break repair was assessed with γH2AX foci counting. Results: Our novel radiosensitizer screen identified the activity of bicalutamide, an AR antagonist, in RT-resistant BCC lines (R2 = 0.46, p-value < 0.01). Heterogeneity in AR expression was identified in human BCC lines. There was a strong correlation between AR RNA expression and protein expression across all BC intrinsic subtypes. AR inhibition using SEVI induced radiation sensitivity in vitro with an enhancement ratio (ER) of 1.24-1.62 in three different AR+ TNBC lines. No such radiosensitization was seen in AR(-) TNBC or ER+, AR(-) BCC lines. Radiosensitization was at least partially dependent on impaired dsDNA break repair with significant delays in dsDNA break repair at 16 and 24 hours in all AR+ TNBC lines examined (p-value < 0.01). Conclusions: Our results implicate the AR as a mediator of radioresistance in breast cancer and support the rationale for developing seviteronel as a novel radiosensitizing agent in AR+ TNBC.

2020 ◽  
Vol 20 (4) ◽  
pp. 437-449
Author(s):  
Jubie Selvaraj ◽  
Jameera B.A. John ◽  
Nanjan M. Joghee ◽  
Justin Antony ◽  
Ashish Wadhwani ◽  
...  

Background: : Current drugs used for the treatment of hormone-dependent breast cancer function as anti-estrogens in the breast, in addition to Estrogen Receptor (ER) agonists in the uterus, thus elevate a woman’s risk of developing uterine cancer. This is due to the lack of selective binding and partial agonistic effect of these drugs towards estrogen receptors. In recent years, therefore, researchers have turned their attention towards antiestrogens devoid of these agonist properties and thus have a mechanism of action different from the existing drugs. Objective:: In this context, we report here the design, development and in vitro evaluation of some novel pharmacophores containing coumarin and fatty acid scaffolds for their anti-breast cancer activity. Methods: : A library of coumarin-fatty acid conjugates was designed using structure-based drug design approach. The conjugates which have shown good in silico results were then synthesized, characterized and evaluated for their anti-breast cancer activity by MTT assay, Apoptotic assay, Cell proliferation assay, Estrogen binding assay and Gene expression study. Results: Out of the fifteen compounds screened, two compounds, SAC-2 and LNAC-2, showed good activity with IC50 values 22µg/ml, 25μg/ml, respectively. These compounds suppressed the proliferation of ER overexpressed MCF-7 cells, increased ERα degradation and hence inactivate the ERα pathway. ER binding assay and gene expression RT-PCR study reveal that SAC-2 downregulated the expression of ERα receptor and AKT-1 gene. Conclusion:: Compound SAC-2 is a good antagonist to ER and hence has a potential for treating breast cancer and other cancers where AKT plays an important role.


2021 ◽  
Vol 11 (19) ◽  
pp. 9139
Author(s):  
Maria Stefania Sinicropi ◽  
Cinzia Tavani ◽  
Camillo Rosano ◽  
Jessica Ceramella ◽  
Domenico Iacopetta ◽  
...  

Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 625 ◽  
Author(s):  
Yi-Fen Chiang ◽  
Hsin-Yuan Chen ◽  
Ko-Chieh Huang ◽  
Po-Han Lin ◽  
Shih-Min Hsia

Excessive growth of cancer cells is the main cause of cancer mortality. Therefore, discovering how to inhibit cancer growth is an important research topic. Recently, the newly discovered adipokine, known as nicotinamide phosphoribosyl transferase (NAMPT, visfatin), which has been associated with metabolic syndrome and obesity, has also been found to be a major cause of cancer proliferation. Therefore, inhibition of NAMPT and reduction of Nicotinamide adenine dinucleotide (NAD) synthesis is one strategy for cancer therapy. Cinnamaldehyde (CA), as an antioxidant and anticancer natural compound, may have the ability to inhibit visfatin. The breast cancer cell line and xenograft animal models were treated under different dosages of visfatin combined with CA and FK866 (a visfatin inhibitor) to test for cell toxicity, as well as inhibition of tumor-related proliferation of protein expression. In the breast cancer cell and the xenograft animal model, visfatin significantly increased proliferation-related protein expression, but combination with CA or FK866 significantly reduced visfatin-induced carcinogenic effects. For the first time, a natural compound inhibiting extracellular and intracellular NAMPT has been demonstrated. We hope that, in the future, this can be used as a potential anticancer compound and provide further directions for research.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 519 ◽  
Author(s):  
Ahmed Dhahir Latif ◽  
Tamás Jernei ◽  
Ana Podolski-Renić ◽  
Ching-Ying Kuo ◽  
Máté Vágvölgyi ◽  
...  

Hybrid compounds combine fragments with complementary targets to achieve a common pharmacological goal. This approach represents an increasingly popular strategy for drug discovery. In this work, we aimed to design antitumor hybrid compounds based on an inhibitor of ataxia-telangiectasia and Rad3-related protein (ATR)-dependent signaling, protoapigenone, and a pro-oxidant ferrocene or chalcone fragment. Four new triazole-coupled hybrids were prepared. The compounds were cytotoxic against human breast cancer cell lines in vitro, showing IC50 values in the sub-micromolar range. The nature of interactions between relevant fragments of the hybrids was evaluated by the Chou–Talalay method. Experimental combination treatment with the fragments showed additive effects or slight/moderate synergism, while strong synergism was observed when the fragments were virtually combined into their hybrids, suggesting a relevant pharmacological benefit of the coupling. All hybrids were strong inhibitors of the ATR-mediated activation of Chk1, and they interfered with the redox balance of the cells leading to mitochondrial membrane depolarization. Additionally, they induced late apoptosis and primary necrosis in MDA-MB-231 and MCF-7 breast cancer cells, respectively. Our results demonstrate that coupling the ATR-dependent signaling inhibitor protoflavone with a pro-oxidant chalcone dramatically increases the antitumor activity compared with either fragment alone. Such compounds may offer an attractive novel strategy for the treatment of various cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Amalia Luce ◽  
Stefania Lama ◽  
Pilar Chacon Millan ◽  
Annalisa Itro ◽  
Angelo Sangiovanni ◽  
...  

Osteosarcoma is a bone cancer characterized by the production of osteoid tissue and immature bone from mesenchymal cells. Osteosarcoma mainly affects long bones (femur is most frequently site) and occur in children and young adults with greater incidence. Here, we investigated the role accomplished by polydatin, a natural antioxidative compound, in promoting osteogenic differentiation alone or after radiation therapy on osteosarcoma cells. In vitro, polydatin significantly induced cell cycle arrest in S-phase and enhanced bone alkaline phosphatase activity. Moreover, the differentiation process was paralleled by the activation of Wnt-β-catenin pathway. In combination with radiotherapy, the pretreatment with polydatin promoted a radiosensitizing effect on osteosarcoma cancer cells as demonstrated by the upregulation of osteogenic markers and reduced clonogenic survival of tumor cells. Additionally, we analyzed, by mass spectrometry, the secretion of sphingolipid, ceramides, and their metabolites in osteosarcoma cells treated with polydatin. Overall, our results demonstrate that polydatin, through the secretion of sphingolipids and ceramide, induced osteogenic differentiation, alone and in the presence of ionizing therapy. Future investigations are needed to validate the use of polydatin in clinical practice as a potentiating agent of radiotherapy-induced anticancer effects.


2021 ◽  
Author(s):  
Xiao Tong ◽  
Jiani Xing ◽  
Haizhou Liu ◽  
Shunheng Zhou ◽  
Yue Huang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) is widely described as a class of RNA longer than 200 nucleotides without encoding capability. But recent years, more and more open reading frames (ORFs) have been found in lncRNAs which indicate they have coding capacity. But the mechanisms of the encoding products in cancer are mostly unknown. We have previously shown lncRNA HCP5 is an oncogene in triple negative breast cancer (TNBC), and the aim of the current study was to investigate if lncRNA HCP5 encoding protein promotes TNBC by regulating ferroptosis. Methods We use bioinformatics to predict coding capacity. Molecular biology experiments and the xenograft assay in nude mice to study the mechanism of lncRNA HCP5 encoding protein. And the protein expression was evaluated in a tissue microarray of 140 invasive breast tumors and 45 pared precancerous breast tissues. Association between the protein expression and clinicopathologic features of breast cancer patients was analyzed. Results In this study, we identify that ORF in lncRNA HCP5 can encode a conserved protein with 132-amino acid. The protein, which is named HCP5-132aa, promotes TNBC growth. Mechanistically, the HCP5-132aa regulates GPX4 expression and lipid ROS level through ferroptosis pathway to promote TNBC progression. HCP5-132aa ORF knockdown synergizes with ferroptosis activators in vitro and in vivo. Breast cancer patients with high levels of HCP5-132aa have poorer prognosis. Conclusions Our study indicates that overexpression of lncRNA HCP5 encoding protein is a critical oncogenic event in TNBC. Our findings uncover a regulatory mechanism of ferroptosis in TNBC orchestrated by a protein encoded by an lncRNA.


Sign in / Sign up

Export Citation Format

Share Document