Working Principle of GNSS

2021 ◽  
pp. 39-53
Author(s):  
Basudeb Bhatta
Keyword(s):  
2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.


Author(s):  
M. K. Savkin ◽  
A. R. Filatov

Nowadays majority of navigation methods, used in unmanned flying vehicles, are based on satellite navigation systems, such as GPS or GLONASS, or are amplified with them. But hardware, that uses such systems, can’t work in difficult conditions, for example causes by relief: with insufficient number of satellites or at low satellite signal. Satellite navigation systems are vulnerable for methods of radio defense: satellite signal can be deadened or replaced. That is why such systems usage is unacceptable while critical missions during military operations, emergency or reconnaissance. The article briefly describes components used for building alternative satellite-free navigation systems for flying vehicles. For each component its purpose and brief description of working principle are given, advantages and disadvantages are considered.


2021 ◽  
Vol 11 (7) ◽  
pp. 2909
Author(s):  
Weiqing Huang ◽  
Liyi Lai ◽  
Zhenlin Chen ◽  
Xiaosheng Chen ◽  
Zhi Huang ◽  
...  

Imitating the structure of the venous valve and its characteristics of passive opening and closing with changes in heart pressure, a piezoelectric pump with flexible valves (PPFV) was designed. Firstly, the structure and the working principle of the PPFV were introduced. Then, the flexible valve, the main functional component of the pump, was analyzed theoretically. Finally, an experimental prototype was manufactured and its performance was tested. The research proves that the PPFV can achieve a smooth transition between valved and valveless by only changing the driving signal of the piezoelectric (PZT) vibrator. The results demonstrate that when the driving voltage is 100 V and the frequency is 25 Hz, the experimental flow rate of the PPFV is about 119.61 mL/min, and the output pressure is about 6.16 kPa. This kind of pump can realize the reciprocal conversion of a large flow rate, high output pressure, and a small flow rate, low output pressure under the electronic control signal. Therefore, it can be utilized for fluid transport and pressure transmission at both the macro-level and the micro-level, which belongs to the macro–micro combined component.


Author(s):  
M Sreekanth ◽  
R Sivakumar ◽  
M Sai Santosh Pavan Kumar ◽  
K Karunamurthy ◽  
MB Shyam Kumar ◽  
...  

This paper presents a detailed and objective review of regenerative flow turbomachines, namely pumps, blowers and compressors. Several aspects of turbomachines like design and operating parameters, working principle, flow behaviour, performance parameters and analytical and Computational Fluid Dynamics (CFD) related details have been reviewed and summarized. Experimental work has been put in perspective and the most useful results for optimized performance have been presented. Consolidated plots of specific speed-specific diameter have been plotted which can be helpful in the early stages of design. Industrial outlook involving details of suppliers from various parts of the world, their product description and applications too are included. Finally, future research work to be carried out to make these machines widespread is suggested. This review is targeted at designer engineers who would need quantitative data to work with.


Author(s):  
Ping Qi ◽  
Limei Cao ◽  
Jun Wang ◽  
Luís Ribeiro e Sousa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aizhan Issatayeva ◽  
Aida Amantayeva ◽  
Wilfried Blanc ◽  
Daniele Tosi ◽  
Carlo Molardi

AbstractThis paper presents the performance analysis of the system for real-time reconstruction of the shape of the rigid medical needle used for minimally invasive surgeries. The system is based on four optical fibers glued along the needle at 90 degrees from each other to measure distributed strain along the needle from four different sides. The distributed measurement is achieved by the interrogator which detects the light scattered from each section of the fiber connected to it and calculates the strain exposed to the fiber from the spectral shift of that backscattered light. This working principle has a limitation of discriminating only a single fiber because of the overlap of backscattering light from several fibers. In order to use four sensing fibers, the Scattering-Level Multiplexing (SLMux) methodology is applied. SLMux is based on fibers with different scattering levels: standard single-mode fibers (SMF) and MgO-nanoparticles doped fibers with a 35–40 dB higher scattering power. Doped fibers are used as sensing fibers and SMFs are used to spatially separate one sensing fiber from another by selecting appropriate lengths of SMFs. The system with four fibers allows obtaining two pairs of opposite fibers used to reconstruct the needle shape along two perpendicular axes. The performance analysis is conducted by moving the needle tip from 0 to 1 cm by 0.1 cm to four main directions (corresponding to the locations of fibers) and to four intermediate directions (between neighboring fibers). The system accuracy for small bending (0.1–0.5 cm) is 90$$\%$$ % and for large bending (0.6–1 cm) is approximately 92$$\%$$ % .


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Tae-Hoon Lee ◽  
Gun-Ha Yoon ◽  
Seung-Bok Choi

This paper investigates the deploying time (or response time) of an active hood lift system (AHLS) of a passenger vehicle activated by gunpowder actuator. In this work, this is accomplished by changing principal design parameters of the latch part mechanism of the hood system. After briefly introducing the working principle of the AHLS operated by the gunpowder actuator, the governing equations of the AHLS are formulated for each different deploying motion. Subsequently, using the governing equations, the response time for deploying the hold lift system is determined by changing several geometric distances such as the distance from the rotational center of the pop-up guide to the point of the latch in the axial and vertical directions. Then, a comparison is made of the total response time to completely deploy the hood lift system with the existing conventional AHLS and proposed AHLS. In addition, the workable driving speed of the proposed AHLS is compared with the conventional one by changing the powder volume of the actuator.


2011 ◽  
Vol 422 ◽  
pp. 296-299
Author(s):  
Shi Long Wang ◽  
Li Na Wang ◽  
Hong Bo Wang ◽  
Yong Hui Cai

In order to achieve the target of controlling SO2 emissions in fumes in a short period of time in China, a SO2 on-line monitoring system (CEMS) has been developed by the authorased on the principle of electrochemistry. This system consists of two subsystems: (1) SO2 mass concentration monitoring and (2) SO2 flow velocity and flow rate monitoring. In the paper, the procedure of system and working principle and method of SO2 mass concentration monitoring subsystem are described in detail (SO2 flow velocity and flow rate monitoring subsystem is described by another paper).Two subsystems work synchronously to monitor and calculate the SO2 emissions, then the on-line monitoring of SO2 emissions is achieved. Through experiment and testing, monitoring result of the system is stable and reliable, which has reached the national monitoring standards and passed the appraisal.


2021 ◽  
Author(s):  
Till Fuchs ◽  
Boris Mogwitz ◽  
Svenja-Katharina Otto ◽  
Stefano Passerini ◽  
Felix Herrmann Richter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document