scholarly journals Sex Difference in Hepatic Peroxisome Proliferator-Activated Receptor α Expression: Influence of Pituitary and Gonadal Hormones

Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Masoumeh Jalouli ◽  
Linda Carlsson ◽  
Caroline Améen ◽  
Daniel Lindén ◽  
Anna Ljungberg ◽  
...  

Abstract Peroxisome proliferator-activated receptor (PPAR) α is a nuclear receptor that is mainly expressed in tissues with a high degree of fatty acid oxidation such as liver, heart, and skeletal muscle. Unsaturated fatty acids, their derivatives, and fibrates activate PPARα. Male rats are more responsive to fibrates than female rats. We therefore wanted to investigate if there is a sex difference in PPARα expression. Male rats had higher levels of hepatic PPARα mRNA and protein than female rats. Fasting increased hepatic PPARα mRNA levels to a similar degree in both sexes. Gonadectomy of male rats decreased PPARα mRNA expression to similar levels as in intact and gonadectomized female rats. Hypophysectomy increased hepatic PPARα mRNA and protein levels. The increase in PPARα mRNA after hypophysectomy was more pronounced in females than in males. GH treatment decreased PPARα mRNA and protein levels, but the sex-differentiated secretory pattern of GH does not determine the sex-differentiated expression of PPARα. The expression of PPARα mRNA in heart or soleus muscle was not influenced by gender, gonadectomy, hypophysectomy, or GH treatment. In summary, pituitary-dependent hormones specifically regulate hepatic PPARα expression. Sex hormones regulate the sex difference in hepatic PPARα levels, but not via the sexually dimorphic GH secretory pattern.

2015 ◽  
Vol 35 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Yuriy Nozhenko ◽  
Ana M. Rodríguez ◽  
Andreu Palou

Background: Skeletal muscle can experience pronounced metabolic adaptations in response to extrinsic stimuli, and expresses leptin receptor (OB-Rb). We aimed to further the understanding of leptin effects on muscle cells, by studying the expression of key energy metabolism genes in C2C12 myotubes. Methods: We performed a dose-time-dependent study with physiological concentrations of leptin: 5, 10 and 50ng/ml, for 0, 30', 3h, 6h, 12h and 24h, also monitoring time-course changes in non-treated cells. mRNA levels were analyzed by RT-qPCR and peroxisome proliferator activated receptor γ coactivator 1α (PGC1α) protein levels by western blot. Results: The most significant effects were observed with 50ng/ml leptin. In the short-term (30' and/or 3h), leptin significantly induced the expression of PGC1α, muscle carnitine palmitoyl transferase 1 (mCPT1), uncoupling protein 3 (UCP3), OB-Rb, Insulin receptor (InsR) and interleukins 6 and 15 (IL6, IL15). There was a decrease in mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and mCPT1 in the long-term (24h). PGC1α protein levels were increased (24h). Conclusion: Leptin rapidly induces the expression of genes important for its own response and the control of metabolic fuels, with the rapid responses of the genes encoding the master regulator PGC1α, mCPT1, UCP3, PDK4 and the signaling secretory molecule IL6 particularly interesting.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Makoto Ayaori ◽  
Masatsune Ogura ◽  
Kazuhiro Nakaya ◽  
Tetsuya Hisada ◽  
Shun-ichi Takiguchi ◽  
...  

ATP binding cassette transporter G1 (ABCG1), which is expressed in macrophages, has been implicated in the efflux of cholesterol to high density lipoprotein. Peroxisome proliferator-activated receptor γ (PPARγ) has been reported to be involved in cholesterol efflux from macrophages, and increased expression of ABCG1 via liver receptor X (LXR)-dependent and independent pathways. However, the mechanisms by which ABCG1 expression is increased by PPARγ have not been fully characterized. We observed that pioglitazone, a PPARγ ligand, increases cholesterol efflux from THP-1 macrophages, as well as ABCG1 mRNA and protein levels. Treatment with actinomycin D abolished the inducible effect of pioglitazone on ABCG1, indicating that pioglitazone transcriptionally activated ABCG1 expression. To clarify how pioglitazone regulates ABCG1 expression, we investigated promoter activity using reporter constructs containing human ABCG1 promoter A and B (located upstream of exon 1 and 5, respectively), with or without mutated LXR-binding sites. The results indicated that pioglitazone activated both promoters in an LXR-dependent manner. We also observed that pioglitazone increased two major transcripts driven by promoter A and B using specific primers for each transcript. To determine whether PPARγ and LXRα were involved in these effects of pioglitazone, we performed siRNA-knockdown of PPARγ and LXRα in macrophages, which resulted in 75% and 91% decreases in PPARγ and LXRα mRNA levels, respectively. PPARγ and LXRα-knockdown, respectively, completely or partially abolished pioglitazone-induced ABCG1 expression. In conclusion, these results suggest that pioglitazone transcriptionally increased ABCG1 expression in macrophages by activating dual promoters in an LXR-dependent manner. Further studies are needed to assess LXR-independent mechanisms for the stimulatory effect of pioglitazone on ABCG1.


1998 ◽  
Vol 158 (2) ◽  
pp. 237-246 ◽  
Author(s):  
LQ Fan ◽  
RC Cattley ◽  
JC Corton

The 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) family of proteins regulates the levels of the active 17 beta-hydroxy forms of sex steroids. The expression of 17 beta-HSD type IV is induced by peroxisome proliferator chemicals (PPC) in rat liver. In order to characterize more generally the impact of PPC on 17 beta-HSD expression, we determined (1) if expression of other members of the 17 beta-HSD family was coordinately induced by PPC exposure, (2) the tissues in which 17 beta-HSD was induced by PPC, and (3) whether the induction of 17 beta-HSD by PPC was dependent on the peroxisome proliferator-activated receptor alpha (PPAR alpha), the central mediator of PPC effects in the mouse liver. The mRNA levels of 17 beta-HSD I, II, and III were not altered in the liver, kidney, and testis or uterus of rats treated with PPC. The mRNA or 80 kDa a full-length protein levels of 17 beta-HSD IV were strongly induced in liver and kidney, but not induced in adrenals, brown fat, heart, testis, and uterus of rats treated with diverse PPC. In liver and kidneys from treated rats, additional proteins of 66 kDa, 56 kDa, and 32 kDa were also induced which reacted with the anti-17 beta-HSD IV antibodies and were most likely proteolytic fragments of 17 bega-HSD IV. Treatment of mice which lack a functional form of PPAR alpha with PPC, demonstrated that PPC-inducibility of 17 beta-HSD IV mRNA or the 80 kDa protein was dependent on PPAR alpha expression in liver and kidney. Our results demonstrate that 17 beta-HSD IV is induced by PPC through a PPAR alpha-dependent mechanism and support the hypothesis that exposure to PPC leads to alterations in sex steroid metabolism.


1986 ◽  
Vol 111 (2) ◽  
pp. 239-244 ◽  
Author(s):  
D. A. Carter ◽  
T. D. M. Williams ◽  
S. L. Lightman

ABSTRACT The influence of endogenous opioids on the posterior pituitary response to stress was investigated by measuring plasma hormone levels in immobilized male and female rats following either acute naloxone treatment or prolonged morphine administration. Naloxone significantly potentiated the oxytocin and arginine vasopressin (AVP) response to immobilization, but in female rats only. The responses of morphine-treated male rats showed differences compared with vehicle-treated controls, although chronic morphine treatment did not reliably alter the oxytocin or AVP responses to immobilization in males or females. In a further experiment to investigate the role of gonadal hormones in determining the sex difference in responsiveness to naloxone, it was found that acute naloxone treatment significantly potentiated the posterior pituitary response to stress in castrated male rats. These results extend previous studies showing a sex difference in stress-induced secretion of posterior pituitary hormones, providing evidence of a sexual dimorphism in the endogenous opioid regulation of this response which is partly determined by circulating gonadal hormones. J. Endocr. (1986) 111, 239–244


2014 ◽  
Vol 306 (6) ◽  
pp. E615-E626 ◽  
Author(s):  
A. H. V. Remels ◽  
N. A. Pansters ◽  
H. R. Gosker ◽  
A. M. W. J. Schols ◽  
R. C. J. Langen

Physical inactivity-induced loss of skeletal muscle oxidative phenotype (OXPHEN), often observed in chronic disease, adversely affects physical functioning and quality of life. Potential therapeutic targets remain to be identified, since the molecular mechanisms involved in reloading-induced recovery of muscle OXPHEN remain incompletely understood. We hypothesized a role for alternative NF-κB, as a recently identified positive regulator of muscle OXPHEN, in reloading-induced alterations in muscle OXPHEN. Markers and regulators (including alternative NF-κB signaling) of muscle OXPHEN were investigated in gastrocnemius muscle of mice subjected to a hindlimb suspension/reloading (HLS/RL) protocol. Expression levels of oxidative phosphorylation subunits and slow myosin heavy chain isoforms I and IIA increased rapidly upon RL. After an initial decrease upon HLS, mRNA levels of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC) molecules PGC-1α and PGC-1β and mRNA levels of mitochondrial transcription factor A (Tfam) and estrogen-related receptor α increased upon RL. PPAR-δ, nuclear respiratory factor 1 (NRF-1), NRF-2α, and sirtuin 1 mRNA levels increased during RL although expression levels were unaltered upon HLS. In addition, both Tfam and NRF-1 protein levels increased significantly during the RL period. Moreover, upon RL, IKK-α mRNA and protein levels increased, and phosphorylation of P100 and subsequent processing to P52 were elevated, reflecting alternative NF-κB activation. We conclude that RL-induced recovery of muscle OXPHEN is associated with activation of alternative NF-κB signaling.


2001 ◽  
pp. 687-690 ◽  
Author(s):  
O Gualillo ◽  
JE Caminos ◽  
M Kojima ◽  
K Kangawa ◽  
E Arvat ◽  
...  

OBJECTIVE: The recently isolated endogenous GH secretagogue, named ghrelin, is a gastric peptide of 28 amino acids with an n-octanoylation in the serine 3 that confers the biological activity to this factor. Ghrelin has been shown to directly stimulate GH release in vivo and in vitro and to be involved in the regulation of gastric acid secretion and motility. In the present work we have studied gender and gonadal dependency of ghrelin mRNA expression in rat stomach. DESIGN AND METHODS: We analysed ghrelin mRNA expression in rat stomach by Northern blot analysis. We also examined the effect of gonadal steroid deprivation on ghrelin mRNA expression. RESULTS AND CONCLUSIONS: The results obtained showed clearly that ghrelin gastric mRNA expression increased with age in young rats (up to 90 days old) but exhibited no significant sex difference at each age tested. Ghrelin mRNA levels were lowest at postnatal day 9, reaching a stable level of expression at day 40 in both female and male rats, although the increase in female rats appears much more gradual than that in males. Moreover, neither ovariectomy nor orchidectomy significantly modified ghrelin mRNA gastric levels in adult rats. In conclusion, these data indicate that ghrelin mRNA expression is associated with age and that a progressive increase is present from the perinatal period up to a stable level after puberty. Gonadal hormones did not alter ghrelin mRNA levels. Taken together, these data showed that ghrelin mRNA levels in young rats are age but not gender dependent, and are not influenced by gonadal steroids.


Endocrinology ◽  
2000 ◽  
Vol 141 (2) ◽  
pp. 649-656 ◽  
Author(s):  
M. N. Dieudonne ◽  
R. Pecquery ◽  
M. C. Leneveu ◽  
Y. Giudicelli

Abstract To investigate the role of sex steroid hormones in adipose tissue development and distribution, we have studied the effect of various sex steroids (testosterone, dihydrotestosterone (DHT), and 17β-estradiol) in vitro, on the proliferation and differentiation processes in rat preadipocytes from deep (epididymal and parametrial) and superficial (femoral sc) fat deposits. All added steroids failed to affect the growth rate of preadipocytes from male rats when determined from day 1 to day 4 after plating, whether FCS was present or not in the culture medium. In contrast, in preadipocytes from female rats, we observed a positive effect (×2) of 17β-estradiol (0.01μ m) on the proliferative capacities of sc but not parametrial preadipocytes. When preadipocytes were exposed to testosterone or DHT (0.1 μm) during the differentiation process, the glycerol 3-phosphate dehydrogenase activity was significantly decreased in epididymal preadipocytes only. When preadipocytes from male rats were exposed to 17β-estradiol (0.01μ m), the differentiation capacities of preadipocytes were not modified. However, in parametrial preadipocytes from ovariectomized female rats, 17β-estradiol significantly increased (×1.34) the glycerol 3-phosphate dehydrogenase activity. In differentiated preadipocytes that had been exposed to sex steroids, expression of peroxisome proliferator-activated receptor γ2 was up-regulated by 17β-estradiol but not by androgens. As described in other cell types, sex steroids modulate insulin growth factor 1 receptor (IGF1R) expression in preadipocytes. Indeed, IGF1R levels were either enhanced by 17 β-estradiol (0.01 μm) in sc preadipocytes from female ovariectomized rats or decreased by DHT (0.01 μm) in epididymal preadipocytes. These effects were reversed by simultaneous exposure to androgen or estrogen receptor antagonists. In conclusion, this study demonstrates that, in rat preadipocytes kept in primary culture and chronically exposed to sex hormones, androgens elicit an antiadipogenic effect, whereas estrogens behave as proadipogenic hormones. Moreover, our results suggest that these opposite effects could be related to changes in IGF1R (androgens and estrogens) and peroxisome proliferator-activated receptor γ2 expression (estrogens).


2006 ◽  
Vol 290 (5) ◽  
pp. E916-E924 ◽  
Author(s):  
Juan Kong ◽  
Yan Chun Li

We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24–48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPβ induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPα, peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4–8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARγ antagonist; conversely, hVDR partially suppresses the transacting activity of PPARγ but not of C/EBPβ or C/EBPα. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPα and PPARγ mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPα and PPARγ upregulation, antagonization of PPARγ activity, and stabilization of the inhibitory VDR protein.


Author(s):  
Sara Moradi ◽  
Mohamadreza Alivand ◽  
Yaser KhajeBishak ◽  
Mohamad AsghariJafarabadi ◽  
Maedeh Alipour ◽  
...  

Abstract Background Omega3 fatty acids as a ligand of energy-related genes, have a role in metabolism, and energy expenditure. These effects are due to changes in the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and uncoupling protein2 (UCP2). This study evaluated the effect of omega3 supplements on PPARγ mRNA expression and UCP2 mRNA expression and protein levels, as regulators of energy metabolism, resting energy expenditure (REE), and appetite in athletes. Methods In a 3-week double-blind RCT in Tabriz, Iran, in 2019, 36 male athletes, age 21.86 (±3.15) y with 16.17 (±5.96)% body fat were randomized to either an intervention (2000 mg/day omega3; EPA: 360, DHA: 240) or placebo (2000 mg/day edible paraffin) groups. Appetite and REE were assessed before and after the intervention. PPARγ and UCP2 mRNA expression and UCP2 protein levels in blood were evaluated by standard methods. Results Results showed PPARγ mRNA levels, and UCP2 mRNA and protein levels increased in omega3 group (p < 0.05), as did REE (p < 0.05). Also, differences in the sensation of hunger or satiety were significant (p < 0.05). Conclusions Our findings showed that omega3 supplementation leads to the up-regulation of PPARγ and UCP2 expressions as the indicators of metabolism in healthy athletes.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2991-2998 ◽  
Author(s):  
Maaike Kockx ◽  
Philippe P. Gervois ◽  
Philippe Poulain ◽  
Bruno Derudas ◽  
Jeffrey M. Peters ◽  
...  

Plasma fibrinogen levels have been identified as an important risk factor for cardiovascular diseases. Among the few compounds known to lower circulating fibrinogen levels in humans are certain fibrates. We have studied the regulation of fibrinogen gene expression by fibrates in rodents. Treatment of adult male rats with fenofibrate (0.5% [wt/wt] in the diet) for 7 days decreased hepatic A-, Bβ-, and γ-chain mRNA levels to 52% ± 7%, 46% ± 8%, and 81% ± 19% of control values, respectively. In parallel, plasma fibrinogen concentrations were decreased to 63% ± 7% of controls. The suppression of fibrinogen expression was dose-dependent and was already evident after 1 day at the highest dose of fenofibrate tested (0.5% [wt/wt]). Nuclear run-on experiments showed that the decrease in fibrinogen expression after fenofibrate occurred at the transcriptional level, as exemplified for the gene for the A-chain. Other fibrates tested showed similar effects on fibrinogen expression and transcription. The effect of fibrates is specific for peroxisome proliferator-activated receptor- (PPAR) because a high-affinity ligand for PPARγ, the thiazolidinedione BRL 49653, lowered triglyceride levels, but was unable to suppress fibrinogen expression. Direct evidence for the involvement of PPAR in the suppression of fibrinogen by fibrates was obtained using PPAR-null (−/−) mice. Compared with (+/+) mice, plasma fibrinogen levels in (−/−) mice were significantly higher (3.20 ± 0.48 v 2.67 ± 0.42 g/L). Also, hepatic fibrinogen A-chain mRNA levels were 25% ± 11% higher in the (−/−) mice. On treatment with 0.2% (wt/wt) fenofibrate, a significant decrease in plasma fibrinogen to 77% ± 10% of control levels and in hepatic fibrinogen A-chain mRNA levels to 65% ± 12% of control levels was seen in (+/+) mice, but not in (−/−) mice. These studies show that PPAR regulates basal levels of plasma fibrinogen and establish that fibrate-suppressed expression of fibrinogen in rodents is mediated through PPAR.


Sign in / Sign up

Export Citation Format

Share Document