scholarly journals The Onset of Labor Alters Corticotropin-Releasing Hormone Type 1 Receptor Variant Expression in Human Myometrium: Putative Role of Interleukin-1β

Endocrinology ◽  
2007 ◽  
Vol 148 (7) ◽  
pp. 3205-3213 ◽  
Author(s):  
Danijela Markovic ◽  
Manu Vatish ◽  
Mei Gu ◽  
Donna Slater ◽  
Rob Newton ◽  
...  

CRH targets the human myometrium during pregnancy. The efficiency of CRH actions is determined by expression of functional receptors (CRH-R), which are dynamically regulated. Studies in myometrial tissue biopsies using quantitative RT-PCR demonstrated that the onset of labor, term or preterm, is associated with a significant 2- to 3-fold increase in CRH-R1 mRNA levels. Detailed analysis of myometrial CRH-R1 mRNA variants showed a decline of the pro-CRH-R1 mRNA encoding the CRH-R1β variant during labor and increased mRNA levels of CRH-R1d mRNA. Studies in myometrial cells identified IL-1β as an important regulator of myometrial CRH-R1 gene expression because prolonged treatment of myometrial cells with IL-1β (1 ng/ml) for 18 h induced expression of CRH-R1 mRNA levels by 1.5- to 2-fold but significantly attenuated CRH-R1β mRNA expression by 70%. In contrast, IL-1β had no effect on CRH-R1d mRNA expression. Studies using specific inhibitors suggest that ERK1/2, p38 MAPK, and downstream nuclear translocation of nuclear factor-κB mediate IL-1β effects on myometrial CRH-R1 gene. However, the increased CRH-R1 mRNA expression was associated with a dampening of the receptor efficacy to activate the adenylyl cyclase/cAMP signaling cascade. Thus, our findings suggest that IL-1β is an important regulator of CRH-R1 expression and functional activity, and this interaction might play a role in the transition of the uterus from quiescence to active contractions necessary for the onset of parturition.

Author(s):  
Rodolfo R. Favaro ◽  
Diana M. Morales-Prieto ◽  
Jörg Herrmann ◽  
Jürgen Sonnemann ◽  
Ekkehard Schleussner ◽  
...  

Abstract Purpose Several roles are attributed to the myometrium including sperm and embryo transport, menstrual discharge, control of uterine blood flow, and labor. Although being a target of diabetes complications, the influence of high glucose on this compartment has been poorly investigated. Both miRNAs and IGF1R are associated with diabetic complications in different tissues. Herein, we examined the effects of high glucose on the expression of miRNAs and IGF1R signaling pathway in the human myometrium. Methods Human myometrial explants were cultivated for 48 h under either high or low glucose conditions. Thereafter, the conditioned medium was collected for biochemical analyses and the myometrial samples were processed for histological examination as well as miRNA and mRNA expression profiling by qPCR. Results Myometrial structure and morphology were well preserved after 48 h of cultivation in both high and low glucose conditions. Levels of lactate, creatinine, LDH and estrogen in the supernatant were similar between groups. An explorative screening by qPCR arrays revealed that 6 out of 754 investigated miRNAs were differentially expressed in the high glucose group. Data validation by single qPCR assays confirmed diminished expression of miR-215-5p and miR-296-5p, and also revealed reduced miR-497-3p levels. Accordingly, mRNA levels of IGF1R and its downstream mediators FOXO3 and PDCD4, which are potentially targeted by miR-497-3p, were elevated under high glucose conditions. In contrast, mRNA expression of IGF1, PTEN, and GLUT1 was unchanged. Conclusions The human myometrium responds to short-term exposure (48 h) to high glucose concentrations by regulating the expression of miRNAs, IGF1R and its downstream targets.


2006 ◽  
Vol 291 (6) ◽  
pp. R1602-R1612 ◽  
Author(s):  
Colin H. P. Ong ◽  
Zhiheng He ◽  
Leonid Kriazhev ◽  
Xiaochuan Shan ◽  
Roger G. E. Palfree ◽  
...  

Progranulin (pgrn; granulin-epithelin precursor, PC-cell-derived growth factor, or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis, development, inflammation, and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All- trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34+progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO, and, in U-937 only, phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation, suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937, ATRA and chemical differentiation agents greatly increased pgrn mRNA stability, whereas, in HL-60, ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-κB (NF-κB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937, whereas in U-937 it blocked PMA-induced pgrn mRNA expression, suggestive of cell-specific roles for NF-κB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-κB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.


2004 ◽  
Vol 72 (4) ◽  
pp. 2123-2130 ◽  
Author(s):  
Kieran A. Ryan ◽  
Michael F. Smith ◽  
Michael K. Sanders ◽  
Peter B. Ernst

ABSTRACT Toll-like receptor 4 (TLR4) has been identified as a transmembrane protein involved in the host innate immune response to gram-negative bacterial lipopolysaccharide (LPS). Upon activation by LPS recognition, the TIR domain of TLR4 signals through MyD88 to activate the nuclear factor κB (NF-κB) pathway, a critical regulator of many proinflammatory genes, including interleukin-8 (IL-8). Emerging evidence suggests that reactive oxygen species (ROS) can contribute to diverse signaling pathways, including the LPS-induced cascade. In the present study we investigated the role of ROS in TLR-mediated signaling. Purified Escherichia coli LPS, a highly specific TLR4 agonist, elicited an oxidative burst in the monocyte-like cell line THP-1 in a time- and dose-dependent manner. This oxidative burst was shown to be dependent on the presence of TLR4 through transfection studies in HEK cells, which do not normally express this protein, and with bone marrow-derived macrophages from C3H/HeJ mice, which express a mutated TLR4 protein. LPS-stimulated IL-8 expression could be blocked by the antioxidants N-acetyl-l-cysteine and dimethyl sulfoxide at both the protein and mRNA levels. These antioxidants also blocked LPS-induced IL-8 promoter transactivation as well as the nuclear translocation of NF-κB. These data provide evidence that ROS regulate immune signaling through TLR4 via their effects on NF-κB activation.


Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 881-889 ◽  
Author(s):  
Hosana Barata ◽  
Michael Thompson ◽  
Weronika Zielinska ◽  
Young S. Han ◽  
Carlos B. Mantilla ◽  
...  

Abstract Human myometrial contraction plays a fundamental role in labor. Dysfunction of uterine contraction is an important cause of labor progression failure. Although the mechanisms controlling uterine contraction are not completely understood, intracellular Ca2+ mobilization plays an important role during uterine contraction. Several mechanisms of intracellular Ca2+ mobilization are present in smooth muscle, but in the human uterus, only 1,4,5-trisphosphate-induced Ca2+ release has been studied extensively. Ryanodine receptor channels are present in myometrium. We determined the role of the cyclic ADP-ribose (cADPR)-signaling pathway in oxytocin-induced intracellular Ca2+ [(Ca2+)i] transients in human myometrial cells. We found that oxytocin-induced Ca2+ transient is dependent on several sources of Ca2+, including extracellular Ca2+ and intracellular Ca2+ stores. In addition, we found that both the 1,4,5-trisphosphate- and the cADPR-induced Ca2+ releasing systems are important for the induction of [Ca2+]i transients by oxytocin in human myometrial cells. Furthermore, we investigated TNFα regulation of oxytocin-induced [Ca2+]i transients, CD38 cyclase activity, and CD38 expression in human myometrial cells. We found that oxytocin-induced [Ca2+]i transients were significantly increased by 50 ng/ml TNF. Similarly, CD38 mRNA levels, CD38 expression, and cyclase activity were increased by TNFα, thus increasing cADPR levels. We propose that a complex interaction between multiple signaling pathways is important for the development of intracellular Ca2+ transients induced by oxytocin and that TNFα may contribute for the myometrium preparation for labor by regulating the cADPR-signaling pathway. The observation that the cADPR-signaling pathway is important for the development of intracellular Ca2+ transients in human myometrial cells raises the possibility that this signaling pathway could serve as a target for the development of new therapeutic strategies for abnormal myometrial contraction observed during pregnancy.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 515
Author(s):  
Febilla Fernando ◽  
Geertruda J.M. Veenboer ◽  
Martijn A. Oudijk ◽  
Marlies A.M. Kampman ◽  
Karst Y. Heida ◽  
...  

Background and Objectives: Therapeutic interventions targeting molecular factors involved in the transition from uterine quiescence to overt labour are not substantially reducing the rate of spontaneous preterm labour. The identification of novel rational therapeutic targets are essential to prevent the most common cause of neonatal mortality. Based on our previous work showing that Tbx2 (T-Box transcription factor 2) is a putative upstream regulator preceding progesterone withdrawal in mouse myometrium, we now investigate the role of TBX2 in human myometrium. Materials and Methods: RNA microarray analysis of (A) preterm human myometrium samples and (B) myometrial cells overexpressing TBX2 in vitro, combined with subsequent analysis of the two publicly available datasets of (C) Chan et al. and (D) Sharp et al. The effect of TBX2 overexpression on cytokines/chemokines secreted to the myometrium cell culture medium were determined by Luminex assay. Results: Analysis shows that overexpression of TBX2 in myometrial cells results in downregulation of TNFα- and interferon signalling. This downregulation is consistent with the decreased expression of cytokines and chemokines of which a subset has been previously associated with the inflammatory pathways relevant for human labour. In contrast, CXCL5 (C-X-C motif chemokine ligand 5), CCL21 and IL-6 (Interleukin 6), previously reported in relation to parturition, do not seem to be under TBX2 control. The combined bioinformatical analysis of the four mRNA datasets identifies a subset of upstream regulators common to both preterm and term labour under control of TBX2. Surprisingly, TBX2 mRNA levels are increased in preterm contractile myometrium. Conclusions: We identified a subset of upstream regulators common to both preterm and term labour that are activated in labour and repressed by TBX2. The increased TBX2 mRNA expression in myometrium collected during a preterm caesarean section while in spontaneous preterm labour compared to tissue harvested during iatrogenic preterm delivery does not fit the bioinformatical model. We can only explain this by speculating that the in vivo activity of TBX2 in human myometrium depends not only on the TBX2 expression levels but also on levels of the accessory proteins necessary for TBX2 activity.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Suat Suphan Ersahin ◽  
Aynur Ersahin

Abstract Objective It is not known by which mechanism endometrial injury increases pregnancy rates. Leukaemia inhibitory factor (LIF) is a cytokine involved in wound healing and implantation. The aim of this study was to determine the change in endometrial LIF mRNA expression before and after mechanical injury during hysteroscopy. Methods Forty patients with a history of two or more unsuccessful implantations who decided to undergo hysteroscopy in the proliferative phase were divided into two equal groups: one with endometrial injury (scratching group) and the other with noninjury (control group). Endometrial sampling was conducted before injury on the patients in the scratching group, and then injury was performed with monopolar needle forceps. Only diagnostic hysteroscopy was performed on the patients in the control group. Endometrial tissues were collected using a Pipelle catheter between Days 20 and 23 of the mid-luteal phase of the next cycles in both the scratching and control groups. Endometrial LIF mRNA expression was evaluated with the use of reverse-transcription polymerase chain reactions. Results Relative changes in mRNA expression levels of the LIF gene in endometrial samples taken before and after injury were calculated using the 2-ΔΔCt method, and the fold changes obtained were compared between and within the groups. Compared with preinjury values, an 11.1-fold increase was found in postinjury LIF mRNA expression in patients with monopolar forceps injury (p < 0.001). There was a 3.9-fold significant increase in postinjury LIF mRNA levels compared with those in the control group (p < 0.02). Conclusions The fertility-promoting effect of hysteroscopy-guided mechanical endometrial injury may be mediated by LIF mRNA.


2019 ◽  
Vol 18 (13) ◽  
pp. 1927-1933
Author(s):  
Nuri Ozmen ◽  
Ecem Kaya-Sezginer ◽  
Filiz Bakar-Ates

Background: Colchicine, a tricyclic alkaloid, is commonly used in treatment due to its antiinflammatory and anti-fibrotic effects. Besides its toxicity at high doses, colchicine is reported for its potential anticancer effects at lower concentrations. The present study aimed to evaluate the anticancer effects of colchicine in SW480 cells. Methods: The effect of colchicine on cell proliferation was determined by MTT assay. The cellular colchicine uptake was measured by HPLC analysis. The apoptotic effects was evaluated by annexin v binding assay and MMP-9 mRNA expression was determined by RT-PCR experiments. Results: Colchicine showed significant cytotoxicity at 10 ng/ml and higher concentrations and caused a cell cycle arrest of SW480 cells at G2/M phase. The results of HPLC analysis showed that colchicine uptake was increased in correlation with treated concentrations. Colchicine concentrations have increased the amount of apoptotic cell population. The elisa and western blot measurements showed that colchicine led to nuclear translocation of NF-κB proteins and increased caspase levels. The real time PCR experiments showed that colchicine has inhibitory effect on MMP-9 mRNA expression in a concentration dependent manner. Conclusion: These results illustrated that low dose colchicine efficiently induced cell death and apoptosis of SW480 cells and the inhibition of MMP-9 mRNA levels was significantly correlated with the amount of cellular colchicine uptake, suggesting that colchicine has a potential value in the treatment of human colorectal cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ratana Lim ◽  
Martha Lappas

Problem. Some G-protein-coupled receptors (GPCRs) are regulators of inflammation, yet the role of the GPRC, GPR91, is unknown in human myometrium during the processes of human labor and delivery, a major inflammatory event. Method of Study. GPR91 mRNA expression was assessed using RT-qPCR in myometrium obtained from women at term Caesarean section in the absence of labor and during active spontaneous labor and in a mouse model of inflammation-induced preterm labor. Human primary myometrial cells were used to determine the effect of proinflammatory mediators on GPR91 and the effect of GPR91 siRNA on prolabor mediators. Statistical significance was ascribed to a P<0.05. Results. GPR91 mRNA expression was significantly higher in myometrium from women during term spontaneous labor compared to no labor. Likewise, in mice, GPR91 mRNA expression was significantly upregulated in myometrium during inflammation-induced preterm labor compared to preterm no labor. In myometrial cells, IL1B and TNF significantly increased GPR91 mRNA expression. Knockdown of GPR91 by siRNA in myometrial cells significantly suppressed the secretion and/or expression of IL1B- and TNF-induced proinflammatory cytokines (GM-CSF, IL1A, IL1B, and IL6) and chemokines (CXCL8 and CCL2), myometrial contractility (expression of the contraction-associated proteins PTGFR and CX43, secretion of the uterotonic PGF2α, and in situ collagen gel contraction), and the transcription factor NF-κB. Conclusion. Our findings demonstrate that GPR91 is involved in the genesis of proinflammatory and prolabor mediators induced by IL1B or TNF and collectively suggest that GPR91 may contribute to augmentation of the labor processes.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1859 ◽  
Author(s):  
Dawoon Jeong ◽  
Guang-zhi Dong ◽  
Hwa Jin Lee ◽  
Jae-Ha Ryu

In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases.


1995 ◽  
Vol 269 (3) ◽  
pp. G458-G464 ◽  
Author(s):  
A. Shiotani ◽  
J. L. Merchant

Gastrin is one of the most potent regulators of acid secretion and gastrointestinal cell growth. A variety of signals regulate gastrin release from the antral G cell. However, whether these secretagogues also stimulate gastrin gene expression has not been established. Dramatic increases in gastrin gene expression occur in the stomach after birth and in response to chronic achlorhydria. Moreover, gastrin gene expression in malignant islet cell tumors (gastrinomas) appears to represent reactivation of the fetal pattern of expression in the pancreas. Thus differential expression of the gastrin gene is a reflection of differences in transcriptional control. Since various luminal and humoral factors stimulate the production of cAMP and gastrin secretion in both gastrinoma and antral G cells, we studied the effect of cAMP on gastrin gene expression. Using stable and transient transformants of a pituitary cell line containing the human gastrin gene, we found that cAMP stimulates a three-fold increase in gastrin mRNA levels and that the response maps to elements located between -148 and -40 base pairs upstream from the cap site. Collectively, these studies link an important regulator of gastrin secretion to regulation of gastrin gene expression.


Sign in / Sign up

Export Citation Format

Share Document