scholarly journals TBX2, a Novel Regulator of Labour

Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 515
Author(s):  
Febilla Fernando ◽  
Geertruda J.M. Veenboer ◽  
Martijn A. Oudijk ◽  
Marlies A.M. Kampman ◽  
Karst Y. Heida ◽  
...  

Background and Objectives: Therapeutic interventions targeting molecular factors involved in the transition from uterine quiescence to overt labour are not substantially reducing the rate of spontaneous preterm labour. The identification of novel rational therapeutic targets are essential to prevent the most common cause of neonatal mortality. Based on our previous work showing that Tbx2 (T-Box transcription factor 2) is a putative upstream regulator preceding progesterone withdrawal in mouse myometrium, we now investigate the role of TBX2 in human myometrium. Materials and Methods: RNA microarray analysis of (A) preterm human myometrium samples and (B) myometrial cells overexpressing TBX2 in vitro, combined with subsequent analysis of the two publicly available datasets of (C) Chan et al. and (D) Sharp et al. The effect of TBX2 overexpression on cytokines/chemokines secreted to the myometrium cell culture medium were determined by Luminex assay. Results: Analysis shows that overexpression of TBX2 in myometrial cells results in downregulation of TNFα- and interferon signalling. This downregulation is consistent with the decreased expression of cytokines and chemokines of which a subset has been previously associated with the inflammatory pathways relevant for human labour. In contrast, CXCL5 (C-X-C motif chemokine ligand 5), CCL21 and IL-6 (Interleukin 6), previously reported in relation to parturition, do not seem to be under TBX2 control. The combined bioinformatical analysis of the four mRNA datasets identifies a subset of upstream regulators common to both preterm and term labour under control of TBX2. Surprisingly, TBX2 mRNA levels are increased in preterm contractile myometrium. Conclusions: We identified a subset of upstream regulators common to both preterm and term labour that are activated in labour and repressed by TBX2. The increased TBX2 mRNA expression in myometrium collected during a preterm caesarean section while in spontaneous preterm labour compared to tissue harvested during iatrogenic preterm delivery does not fit the bioinformatical model. We can only explain this by speculating that the in vivo activity of TBX2 in human myometrium depends not only on the TBX2 expression levels but also on levels of the accessory proteins necessary for TBX2 activity.

Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 906-914 ◽  
Author(s):  
Pasquapina Ciarmela ◽  
Ezra Wiater ◽  
Sean M. Smith ◽  
Wylie Vale

Myostatin, a member of the TGF-β superfamily of proteins, is known to suppress skeletal muscle mass and myocyte proliferation. The muscular component of the uterus is the myometrium, a tissue that regulates its mass in response to different physiological conditions under the influence of sex steroids. Recently, our laboratory reported effects of activin-A, another TGF-β family member, on signalling and proliferation of rat uterine explants and human myometrial cell lines in culture. Here, we explore the expression, actions, and regulation of myostatin in uterine smooth muscle. Myostatin mRNA was demonstrated to be expressed in a myometrial cell line, pregnant human myometrial 1 cell line (PHM1). Functional assays showed that myostatin induced phosphorylation of Smad-2 and reduced proliferation of PHM1 number in a time and dose-dependent manner. Furthermore, myostatin activated smad-2 specific signalling pathways in rat uterine explants. To expand on our in vitro findings, we found that myostatin is expressed in rat uterus and determined that myostatin mRNA expression varies as a function of the phase of the estrous cycle. Uterine levels of myostatin peaked during late estrus and were the lowest at proestrus. Ovariectomy increased myostatin expression; estrogen treatment strongly decreased myostatin levels, whereas progesterone weakly decreased myostatin expression. In conclusion, myometrial cells are myostatin sensitive, myostatin mRNA levels are modulated in vivo in rats during the estrous cycle, and in response to steroid deprivation and replacement. Myometrial cells are myostatin-sensitive; myostatin mRNA levels are modulated in rats during the estrous cycle and in response to steroid deprivation and replacement.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
Vol 15 (2) ◽  
pp. 132-142
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Arnica montana, containing helenalin as its principal active constituent, is the most widely used plant to treat various ailments. Recent studies indicate that Arnica and helenalin provide significant health benefits, including anti-inflammatory, neuroprotective, antioxidant, cholesterol-lowering, immunomodulatory, and most important, anti-cancer properties. Objective: The objective of the present study is to overview the recent patents of Arnica and its principal constituent helenalin, including new methods of isolation, and their use in the prevention of cancer and other ailments. Methods: Current prose and patents emphasizing the anti-cancer potential of helenalin and Arnica, incorporated as anti-inflammary agents in anti-cancer preparations, have been identified and reviewed with particular emphasis on their scientific impact and novelty. Results: Helenalin has shown its anti-cancer potential to treat multiple types of tumors, both in vitro and in vivo. It has also portrayed synergistic effects when given in combination with other anti- cancer drugs or natural compounds. New purification/isolation techniques are also developing with novel helenalin formulations and its synthetic derivatives have been developed to increase its solubility and bioavailability. Conclusion: The promising anti-cancer potential of helenalin in various preclinical studies may open new avenues for therapeutic interventions in different tumors. Thus clinical trials validating its tumor suppressing and chemopreventive activities, particularly in conjunction with standard therapies, are immediately required.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


2021 ◽  
Vol 11 (14) ◽  
pp. 6353
Author(s):  
Vittoria D’Esposito ◽  
Josè Camilla Sammartino ◽  
Pietro Formisano ◽  
Alessia Parascandolo ◽  
Domenico Liguoro ◽  
...  

Background: The aim of this research was to evaluate the effects of three different titanium (Ti) implant surfaces on the viability and secretory functions of mesenchymal stem cells isolated from a Bichat fat pad (BFP-MSCs). Methods: Four different Ti disks were used as substrate: (I) D1: smooth Ti, as control; (II) D2: chemically etched, resembling the Kontact S surface; (III) D3: sandblasted, resembling the Kontact surface; (IV) D4: blasted/etched, resembling the Kontact N surface. BFP-MSCs were plated on Ti disks for 72 h. Cell viability, adhesion on disks and release of a panel of cytokines, chemokines and growth factor were evaluated. Results: BFP-MSCs plated in wells with Ti surface showed a viability rate (~90%) and proliferative rate comparable to cells plated without disks and to cells plated on D1 disks. D2 and D4 showed the highest adhesive ability. All the Ti surfaces did not interfere with the release of cytokines, chemokines and growth factors by BFP-MSCs. However, BFP-MSCs cultured on D4 surface released a significantly higher amount of Granulocyte Colony-Stimulating Factor (G-CSF) compared either to cells plated without disks and to cells plated on D1 and D2. Conclusions: The implant surfaces examined do not impair the BFP-MSCs cell viability and preserve their secretion of cytokines and chemokines. Further in vitro and in vivo studies are necessary to define the implant surface parameters able to assure the chemokines’ optimal release for a real improvement of dental implant osseointegration.


2019 ◽  
Vol 14 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Fabrizio Fontana ◽  
Michela Raimondi ◽  
Monica Marzagalli ◽  
Roberta M. Moretti ◽  
Marina Montagnani Marelli ◽  
...  

Background: Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties.Objective:The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy.Methods:Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty.Results:TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability.Conclusion:The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


Sign in / Sign up

Export Citation Format

Share Document