scholarly journals Microribonucleic Acid-21 Increases Aldosterone Secretion and Proliferation in H295R Human Adrenocortical Cells

Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2477-2483 ◽  
Author(s):  
Damian G. Romero ◽  
Maria W. Plonczynski ◽  
Cristian A. Carvajal ◽  
Elise P. Gomez-Sanchez ◽  
Celso E. Gomez-Sanchez

MicroRNAs (miRNAs) are endogenous small noncoding RNAs that decrease the expression levels of specific genes by translational repression, sequestration, and degradation of their mRNAs. Angiotensin II is an important modulator of adrenal zona glomerulosa cell physiology, including steroidogenesis and proliferation among many other physiological processes. Because each miRNA may regulate the expression levels of multiple genes, thereby resembling the transcription regulatory networks triggered by transcription factors, we hypothesize that specific miRNAs may be involved in angiotensin II-mediated adrenocortical cell physiology. The human adrenocortical cell line H295R is the only adrenal cell line available with a steroid secretion pattern and regulation similar to freshly isolated adrenocortical cells. We screened for miRNAs regulated by angiotensin II in H295R cells and found that miRNA-21 expression levels were specifically modulated by angiotensin II. Angiotensin II time dependently increased miRNA-21 expression reaching a 4.4-fold induction after 24 h. Angiotensin II-mediated miRNA-21 expression resulted in biologically active miRNA-21, determined using a fusion mRNA reporter system carrying miRNA-21 target sequences in its 3′ untranslated region. Up-regulation of miRNA-21 intracellular levels increased aldosterone secretion but not cortisol. Elevation of miRNA-21 levels also increased cell proliferation in H295R cells. In summary, miRNA-21 is an endogenously expressed miRNA in human adrenal cells. miRNA-21 expression is up-regulated by angiotensin II, and its overexpression caused an increase in aldosterone secretion and cell proliferation. Alterations in miRNA-21 expression levels or function may be involved in dysregulation of angiotensin II signaling and abnormal aldosterone secretion by adrenal glands in humans.

1998 ◽  
Vol 159 (3) ◽  
pp. 373-380 ◽  
Author(s):  
R Rossi ◽  
MC Zatelli ◽  
A Valentini ◽  
P Cavazzini ◽  
F Fallo ◽  
...  

Evidence for the expression of the canonic androgen receptor (AR) in human adrenal cortex has not been provided so far. The aim of the present study was to demonstrate the expression of the AR gene in normal and neoplastic adrenocortical human tissues and in the human adrenocortical cancer cell line, NCI-H295, and then to evaluate the effect of dihydrotestosterone (DHT) on human adrenocortical cell growth. An AR cDNA fragment with the expected size of 262 bp was detected by using reverse transcription (RT)-PCR in normal and neoplastic adrenocortical human tissues and in the neoplastic cell line, demonstrating that the gene for AR is indeed expressed in human adrenal cells. In the human adrenocortical cancer cell line NCI-H295, DHT at physiological concentrations produced a significant reduction in cell proliferation and inhibition of colony formation in soft agar. The inhibitory effect on adrenocortical cell growth was evident after both 24 and 48 h of treatment. The antiandrogens, cyproterone acetate and hydroxyflutamide, were capable of reversing the effects exerted by DHT. The androgen-induced growth inhibitory effect was also detected in primary culture of three non-functioning adrenocortical adenomas. These findings show that the canonic AR is present in human adrenocortical cells and that androgens may have a role in the adrenal cortex by reducing cell proliferation.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 214-221 ◽  
Author(s):  
Kenji Oki ◽  
Phillip G. Kopf ◽  
William B. Campbell ◽  
Milay Luis Lam ◽  
Takeshi Yamazaki ◽  
...  

Aldosterone is synthesized in the zona glomerulosa of the adrenal cortex under primary regulation by the renin-angiotensin system. Angiotensin II (A-II) acts through the angiotensin types 1 and 2 receptors (AT1R and AT2R). A-II is metabolized in different tissues by various enzymes to generate two heptapeptides A-III and angiotensin 1-7, which can then be catabolized into smaller peptides. A-II was more potent than A-III in stimulating aldosterone secretion in the adrenocortical cell line HAC15, and A-II, but not A-III, stimulated cortisol secretion. A-II stimulated mRNA expression of steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, CYP11B1, and CYP11B2, whereas A-III stimulated 3β-hydroxysteroid dehydrogenase, CYP11B1, and CYP11B2 but decreased the expression of CYP17A1 required for cortisol synthesis. The stimulation of aldosterone secretion by A-II and A-III was blocked by the AT1R receptor blocker, losartan, but not by an AT2R blocker. A-II was rapidly metabolized by the HAC15 cells to mainly to angiotensin 1-7, but not to A-III, and disappeared from the supernatant within 6 h. A-III was metabolized rapidly and disappeared within 1 h. In conclusion, A-II was not converted to A-III in the HAC15 cell and is the more potent stimulator of aldosterone secretion and cortisol of the two. A-III stimulated aldosterone secretion but not cortisol secretion.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 891-898 ◽  
Author(s):  
Damian G. Romero ◽  
Gaston R. Vergara ◽  
Zheng Zhu ◽  
Gina S. Covington ◽  
Maria W. Plonczynski ◽  
...  

The adrenal gland secretes several cytokines, and cytokines modulate steroid secretion by this gland. In this study, a survey of cytokine production by H295R human adrenocortical cells demonstrated that these cells secreted IL-2, IL-4, IL-8, IL-10, IL-13, and TNFα but not IL-5, IL-12, or interferon-γ. IL-8 was the IL secreted at higher concentration. IL-8 secretion, its regulation, and role in steroidogenesis were further studied. Secreted ILs and steroids were measured by ELISA in cell culture supernatant. IL-8 mRNA was quantified by real-time RT-PCR. H295R cells and human adrenal gland expressed IL-8 mRNA. Angiotensin II, potassium, endothelin-1, IL-1α, IL-1β, TNFα, and Escherichia coli lipopolysaccharide dose-dependently increase IL-8 secretion by H295R cells after 24 h incubation. IL-6 had no effect on IL-8 secretion. Angiotensin II time-dependently increased IL-8 secretion by H295R cells up to 48 h. Angiotensin II caused a biphasic increase in IL-8 mRNA expression with a peak 6 h after stimulation. TNFα synergized angiotensin II, potassium, and IL-1α-mediated IL-8 secretion. IL-8 did not modify aldosterone or cortisol secretion by H295R cells under basal or stimulated (angiotensin II or potassium) conditions. In conclusion, it is demonstrated for the first time that human adrenal cells expressed and secreted IL-8 under the regulation of angiotensin II, potassium, endothelin-1, and immune peptides. Adrenal-secreted IL-8 is one point of convergence between the adrenal gland and the immune system and may have relevance in physiological and pathophysiological conditions associated with increased levels of aldosterone secretagogues and the immune system.


2020 ◽  
Vol 21 (19) ◽  
pp. 7003
Author(s):  
Jung Joo Yoon ◽  
Hyeon Kyoung Lee ◽  
Hye Yoom Kim ◽  
Byung Hyuk Han ◽  
Ho Sub Lee ◽  
...  

Abnormal and excessive growth of mesangial cells is important in the pathophysiologic processes of diabetes-associated interstitial fibrosis and glomerulosclerosis, leading to diabetic nephropathy, which eventually turns into end-stage renal disease. Sauchinone, a biologically-active lignan isolated from aerial parts of Saururus chinensis, has anti-inflammatory and anti-viral activities effects on various cell types. However, there are no studies reporting the effects of sauchinone on diabetic nephropathy. The present study aims to investigate the role of sauchinone in mesangial cell proliferation and fibrosis induced by angiotensin II, as well as the underlying mechanisms of these processes. Human renal mesangial cells were induced by angiotensin II (AngII, 10 μM) in the presence or absence of sauchinone (0.1–1 μM) and incubated for 48 h. In this study, we found that AngII induced mesangial cell proliferation, while treatment with sauchinone inhibited the cell proliferation in a dose-dependent manner. Pre-treatment with sauchinone induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21, and p27kip1 expression. In addition, AngII-enhanced expression of fibrosis biomarkers such as fibronectin, collagen IV, and connective tissue growth factor (CTGF), which was markedly attenuated by sauchinone. Sauchinone also decreased AngII-induced TGF-β1 and Smad-2, Smad-3, and Smad-4 expression. This study further revealed that sauchinone ameliorated AngII-induced mesangial inflammation through disturbing activation of inflammatory factors, and NLRP3 inflammasome, which is composed of the NLRP3 protein, procaspase-1, and apoptosis-associated speck-like protein containing a CARD (ASC). Moreover, pretreatment of sauchinone inhibited NF-κB translocation and ROS production in AngII-exposed mesangial cells. These data suggest that sauchinone has a protective effect on renal proliferation, fibrosis and inflammation. Therefore, sauchinone might be a potential pharmacological agent in prevention of AngII-induced renal damage leading to diabetic nephropathy.


2004 ◽  
Vol 33 (2) ◽  
pp. 511-522 ◽  
Author(s):  
J Liu ◽  
X-D Li ◽  
A Ora ◽  
P Heikkilä ◽  
A Vaheri ◽  
...  

Adrenocorticotropin is the major regulator of adrenocortical development and function. It acts mainly through the cAMP-dependent protein kinase A (PKA) pathway. Our aim was to study the interaction of tumor necrosis factor-α (TNFα) and the PKA pathway in adrenocortical cell proliferation and apoptosis. The PKA activator Dibutyryl cAMP ((Bu)2cAMP) strongly induced differentiation and inhibited proliferation in the human adrenocortical cell line NCI-H295R (H295R). TNFα induced apoptosis of H295R cells. Interestingly, (Bu)2cAMP treatment clearly enhanced TNFα-induced apoptosis in H295R cells, but not in another human adrenocortical cell line SW-13, the mouse adrenocortical Y-1 cell line or the human HeLa cell line. This synergistic effect was not due to the (Bu)2cAMP-induced glucocorticoid secretion since dexamethasone had no significant effect on the TNFα-induced apoptosis. (Bu)2cAMP treatment rapidly increased the expression of the proto-oncogene c-myc in H295R cells, but not in SW-13, Y-1 or HeLa cells. In transient c-myc transfection assay, c-myc expression associated with decreased expression of the proliferation marker Ki-67 in H295R cells. In conclusion, cAMP-dependent protein kinase activation reduced proliferation and augmented TNFα-induced apoptosis in adrenocortical H295R cells, and these effects were associated with increased c-myc expression.


2016 ◽  
Vol 39 (11) ◽  
pp. 758-763 ◽  
Author(s):  
Shin-Ichiro Miura ◽  
Yasunori Suematsu ◽  
Yoshino Matsuo ◽  
Sayo Tomita ◽  
Asuka Nakayama ◽  
...  

2014 ◽  
Vol 221 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Romina Maria Pagotto ◽  
Elba Nora Pereyra ◽  
Casandra Monzón ◽  
Carolina Mondillo ◽  
Omar Pedro Pignataro

Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.


2008 ◽  
Vol 295 (6) ◽  
pp. E1480-E1486 ◽  
Author(s):  
Tanja Brenner ◽  
Kevin M. O'Shaughnessy

The rate of aldosterone synthesis by adrenal glomerulosa cells relies on the selective permeability of the glomerulosa cell to K+ ions. In rodent and bovine adrenal glomerulosa cells, this background potassium current is provided by a two-pore loop potassium (K2P) channel: largely TASK-3 in the rat and TREK-1 in the cow. The nature of the K2P channel in the human adrenal cortex is not known, and we have addressed this issue here using the H295R human adrenal cell line. We show that these cells express mRNA and protein for both TASK-3 and TREK-1 K2P channels. Using a potentiometric dye (FMP), we also show that TASK-3 and TREK-1 channel modulators can affect the membrane potential of H295R cells. Transfecting H295R cells with TASK-3 or TREK-1 dominant-negative mutants (TASK-3 G95E or TREK-1 G144E) produced depolarization of H295R cells and altered K-stimulated aldosterone secretion. Finally, transfection of a constitutively active mutant of Gαq into H295R cells (GTPase-deficient Gαq-QL) depolarized them and increased basal aldosterone secretion. Taken together, our data support both TASK-3 and TREK-1 as being functionally operational in the H295R cell line. This suggests that human adrenal glomerulosa cells may utilize both of these K2P channels for their background potassium current.


1991 ◽  
Vol 128 (2) ◽  
pp. 297-304 ◽  
Author(s):  
R. M. Shepherd ◽  
R. Fraser ◽  
D. J. Nichols ◽  
C. J. Kenyon

ABSTRACT Angiotensin II (AII) stimulation of steroidogenesis is known to be associated with depolarization of the adrenocortical cell membrane. In these cells, membrane permeability to potassium ions governs electrical potential. The effects of All on the rate of efflux of K+ in relation to the control of aldosterone synthesis has been investigated in bovine adrenocortical cells preloaded with 43K. In static incubations, the pattern of 43K efflux fitted a model with two exponential components with t½ values of 47·7±1·7 and 14·2±0·6 (s.e.m.) min. AII increased the efflux rate of the slow-exchange component (t½ 37·1±0·6 min) and retarded efflux from the fast-exchange component. With ouabain present to prevent reuptake of the isotope, the rate of efflux for both components was increased in unstimulated cells (t½ 28·4±1·1 and 12·0±0·7 min). AII again increased the rate of efflux from the slow component (t½ = 24·2±1·7 min, P < 0·01) and retarded efflux from the fast component. These biphasic effects were apparent in cells treated with a range of AII concentrations (0·1 nmol/l–1 μmol/l) but the point in time at which increased efflux from the slower component predominated over retardation of the slow component was earlier for cells treated with 1 μmol AII/l than for cells treated with lower concentrations. We suggest that decreases and increases in K+ efflux caused by AII are associated with depolarization and repolarization respectively. Changes in intracellular concentrations of Ca2+ may link these events. Journal of Endocrinology (1991) 128, 297–304


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4292-4292
Author(s):  
Youshan Zhao ◽  
Feng Xu ◽  
Juan Guo ◽  
Sida Zhao ◽  
Chunkang Chang ◽  
...  

Abstract Background and Object In addition to histone deacetylation, the importance of histone over-acetylation induced oncogene transcription in initiation and progression of myelodysplastic syndrome (MDS) has been proposed recently. Our previous whole-exome sequencing identified a new somatic mutation, ANKRD11, an important factor in histone acetylation regulation. Its roles in MDS pathophysiology need to be clarified. Methods The next generation target sequencing (Including ANKRD11) was carried out in 320 patients with MDS using the MiSeq Benchtop Sequencer. ANKRD11 mRNA expression in bone marrow of MDS was measured by real-time PCR. Loss and gain of function assay were carried out in myeloid cell lines K562, MEG-01£¬or SKM-1 to observe the influence on cell proliferation and differentiation . The levels of histone acetylation at H3 and H4 were detected by Western blot. Results Target sequencing in a cohort of 320 MDS patients identified 14 of ANKRD11 mutations (4.38%, Fig.1), which were confirmed by Sanger sequencing. Meanwhile, no ANKRD11 mutations in 100 normal controls were defined. ANKRD11 mutations occurred frequently in exons 10 and 9. The mRNA expression levels of ANKRD11 were significantly decreased in MDS patients, especially in ANKRD11mutant patients (Fig.2). ANKRD11 knockdown in K562 and MEG-1 resulted in growth inhibition, cell cycle arrest and erythroid/megakaryocytic differentiation retardant. In MDS cell line SKM-1, the arrested differentiation was rescued by over-expression of ANKRD11. Consistent with a role for ANKRD11 in histone acetylation, ANKRD11 KD increased acetylation of histones H3 and H4 at H3K14 and H4K5 and resulted in the upregulation of genes involved in differentiation inhibilation (SOX6, P21, et al). Finally, the ANKRD11 KD-mediated influence on cell proliferation and differentiation were reversed by inhibiting histone acetyltransferase activity. Conclusion Our assay defined that ANKRD11 was a crucial chromatin regulator that suppress histone acetylation and then decrease gene expression during myeloid differentiation, providing a likely explanation for its role in MDS pathogenesis. This study further support histone acetylase inhibitor as a potential treatment in MDS. Figure ANKRD11mutation distribution (a) and coexist with other mutations (b). Figure. ANKRD11mutation distribution (a) and coexist with other mutations (b). Figure The mRNA expression levels of ANKRD11in our MDS (A, C) subset and GEO data (B). Figure. The mRNA expression levels of ANKRD11in our MDS (A, C) subset and GEO data (B). Changes of histone acetylation in ANKRD11-KD cell line (MEG-01). ANKRD11 KD significantly increased acetylation of histones H3 and H4 at H3K14 and H4K5. Changes of histone acetylation in ANKRD11-KD cell line (MEG-01). ANKRD11 KD significantly increased acetylation of histones H3 and H4 at H3K14 and H4K5. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document