scholarly journals Interferon-Stimulated Gene ISG12b1 Inhibits Adipogenic Differentiation and Mitochondrial Biogenesis in 3T3-L1 Cells

Endocrinology ◽  
2008 ◽  
Vol 150 (3) ◽  
pp. 1217-1224 ◽  
Author(s):  
Bing Li ◽  
Jonghyun Shin ◽  
Kichoon Lee

Microarray analysis was performed to find a new group of genes or pathways that might be important in adipocyte development and metabolism. Among them, a mouse interferon-stimulated gene 12b1 (ISG12b1) is expressed at a 400-fold higher level in adipocytes compared with stromal-vascular cells. It is predominantly expressed in adipose tissue among other tissues we tested. Developmentally, ISG12b1 mRNA expression was initially inhibited followed by a dramatic induction during both in vivo and in vitro adipogenic differentiation. Adenovirus-mediated overexpression of ISG12b1 inhibited adipogenic differentiation in 3T3-L1 cells as shown by decreased lipid staining with Oil-Red-O and reduction in adipogenic marker proteins including peroxisome proliferator-activated receptor-γ (PPARγ), and CCAAT/enhancer-binding protein-α (C/EBPα). Our bioinformatics analysis for the predicted localization of ISG12b1 protein suggested the mitochondrial localization, which was confirmed by the colocalization of hemagglutinin-tagged ISG12b1 protein with mitochondrial marker MitoTracker. In addition, ISG12b1 protein was exclusively detected in protein extract from the fractionated mitochondria by Western blot analysis. Furthermore, overexpression of ISG12b1 in adipocytes reduced mitochondrial DNA content and gene expression of mitochondrial transcription factor A (mtTFA), nuclear respiratory factor 1 (NRF1), and cytochrome oxidase II, suggesting an inhibitory role of ISG12b1 in mitochondrial biogenesis and function. Activation of mitochondrial biogenesis and function by treatment with PPARγ and PPARα agonists in 3T3-L1 cells and cold exposure in mice induced mitochondrial transcription factors and reduced ISG12 expression. These data demonstrated that mitochondrial-localized ISG12b1 protein inhibits adipocyte differentiation and mitochondrial biogenesis and function, implying the important role of mitochondrial function in adipocyte development and associated diseases. ISG12b1 is predominantly expressed in adipocytes and dramatically induced at the terminal stage of adipogenesis. Functionally, mitochondria-localized ISG12b1 inhibits adipogenic differentiation and mitochondria biogenesis.

2019 ◽  
Vol 316 (2) ◽  
pp. E293-E304 ◽  
Author(s):  
Simon T. Bond ◽  
Sarah C. Moody ◽  
Yingying Liu ◽  
Mete Civelek ◽  
Claudio J. Villanueva ◽  
...  

Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


2019 ◽  
Vol 20 (11) ◽  
pp. 2675 ◽  
Author(s):  
Nicholas Wilson ◽  
Robert Steadman ◽  
Ilaria Muller ◽  
Mohd Draman ◽  
D. Aled Rees ◽  
...  

Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = −0.396 (p = 0.002), r = −0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.


2020 ◽  
Vol 21 (24) ◽  
pp. 9721
Author(s):  
Giuseppina Augimeri ◽  
Luca Gelsomino ◽  
Pierluigi Plastina ◽  
Cinzia Giordano ◽  
Ines Barone ◽  
...  

Multiple lines of evidence indicate that activation of the peroxisome proliferator-activated receptor γ (PPARγ) by natural or synthetic ligands exerts tumor suppressive effects in different types of cancer, including breast carcinoma. Over the past decades a new picture of breast cancer as a complex disease consisting of neoplastic epithelial cells and surrounding stroma named the tumor microenvironment (TME) has emerged. Indeed, TME is now recognized as a pivotal element for breast cancer development and progression. Novel strategies targeting both epithelial and stromal components are under development or undergoing clinical trials. In this context, the aim of the present review is to summarize PPARγ activity in breast TME focusing on the role of this receptor on both epithelial/stromal cells and extracellular matrix components of the breast cancer microenvironment. The information provided from the in vitro and in vivo research indicates PPARγ ligands as potential agents with regards to the battle against breast cancer.


2010 ◽  
Vol 299 (1) ◽  
pp. C128-C138 ◽  
Author(s):  
Jing Xiao ◽  
Nai-li Wang ◽  
Bing Sun ◽  
Guo-ping Cai

Estrogen receptors (ERs) play a pivotal role in adipogenesis; therefore, compounds targeting ERs may also affect fat formation. Recent studies have shown that the Dioscorea plant (commonly called yam) exhibits an antiobesity effect on rodents. However, the active compounds and underlying mechanisms responsible for this effect are not yet fully understood. We evaluated the effects of pseudoprotodiocsin (PPD), a steroid saponin from Dioscorea nipponica Makino (a type of Dioscorea), on adipogenesis and the mechanisms underlying this effect. Treatment with PPD at the onset of adipogenic differentiation resulted in significantly decreased adipogenesis in both in vitro and in vivo experimental systems. An increased amount of ERα mRNA, protein, and the accumulation of ERα in the nucleus were also observed. However, the expression pattern of ERβ was not altered. Furthermore, the antiadipogenic effect of PPD was found to be ER dependent. It was also accompanied by the decreased expression of several genes involved in adipogenesis, including lipoprotein lipase (LPL), leptin, CCAAT/enhancer-binding-protein-α (C/EBPα), and peroxisome proliferator-activated receptor-γ (PPARγ), as well as the increased expression of some negative factors of adipogenesis, including preadipocyte factor 1 (Pre-1), GATA-binding protein 2 (GATA-2), GC-induced leucine-zipper protein (GILZ), and C/EBP homologous protein (CHOP-10). In addition to its estrogenic action, PPD also abolished the p38 mitogen-activated protein kinase (p38 MAPK) activation. Our results suggest that PPD inhibits adipogenesis in an ER-dependent manner and induces the expression of ERα. These findings may provide a lead toward a novel agent that can be used to treat obesity.


2017 ◽  
Vol 474 (20) ◽  
pp. 3421-3437 ◽  
Author(s):  
Joji Kusuyama ◽  
Tomokazu Ohnishi ◽  
Kenjiro Bandow ◽  
Muhammad Subhan Amir ◽  
Kaori Shima ◽  
...  

Adipogenic differentiation plays a vital role in energy homeostasis and endocrine system. Several transcription factors, including peroxisome proliferator-activated receptor gamma 2 and CCAAT–enhancer-binding protein (C/EBP) α, β, and δ, are important for the process, whereas the stage-specific intracellular signal transduction regulating the onset of adipogenesis remains enigmatic. Here, we explored the functional role of c-jun N-terminal kinases (JNKs) in adipogenic differentiation using in vitro differentiation models of 3T3-L1 cells and primary adipo-progenitor cells. JNK inactivation with either a pharmacological inhibitor or JNK2-specific siRNA suppressed adipogenic differentiation, characterized by decreased lipid droplet appearance and the down-regulation of Adiponectin, fatty acid protein 4 (Fabp4), Pparg2, and C/ebpa expressions. Conversely, increased adipogenesis was observed by the inducible overexpression of p46JNK2 (JNK2-1), whereas it was not observed by that of p54JNK2 (JNK2-2), indicating a distinct role of p46JNK2. The essential role of JNK appears restricted to the early stage of adipogenic differentiation, as JNK inhibition in the later stages did not influence adipogenesis. Indeed, JNK phosphorylation was significantly induced at the onset of adipogenic differentiation. As for the transcription factors involved in early adipogenesis, JNK inactivation significantly inhibited the induction of C/ebpd, but not C/ebpb, during the initial stage of adipogenic differentiation. JNK activation increased C/ebpd mRNA and protein expression through the induction and phosphorylation of activating transcription factor 2 (ATF2) that binds to a responsive element within the C/ebpd gene promoter region. Taken together, these data indicate that constitutive JNK activity is specifically required for the initial stage differentiation events of adipocytes.


2018 ◽  
Vol 314 (2) ◽  
pp. F260-F268 ◽  
Author(s):  
Whitney S. Gibbs ◽  
Sara M. Garrett ◽  
Craig C. Beeson ◽  
Rick G. Schnellmann

Our laboratory recently made the novel observation that 5-hydroxytryptamine 1F (5-HT1F) receptor activation induces mitochondrial biogenesis (MB), the production of new, functional mitochondria, in vitro and in vivo. We sought to determine the mechanism linking the 5-HT1F receptor to MB in renal proximal tubule cells. Using LY344864 , a selective 5-HT1F receptor agonist, we determined that the 5-HT1F receptor is coupled to Gαi/o and induces MB through Gβγ-dependent activation of Akt, endothelial nitric oxide synthase (eNOS), cyclic guanosine-monophosphate (cGMP), protein kinase G (PKG), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). We also report that the 5-HT1F receptor signals through a second, Gβγ-dependent pathway that is linked by Akt phosphorylation of Raf. In contrast to the activated Akt pathway, Raf phosphorylation reduced extracellular signal regulated kinases (ERK1/2) and foxhead box O3a (FOXO3a) phosphorylation, suppressing an inhibitory MB pathway. These results demonstrate that the 5-HT1F receptor regulates MB through Gβγ-dependent dual mechanisms that activate a stimulatory MB pathway, Akt/eNOS/cGMP/PKG/PGC-1α, while simultaneously repressing an inhibitory MB pathway, Raf/MEK/ERK/FOXO3a. Novel mechanisms of MB provide the foundation for new chemicals that induce MB to treat acute and chronic organ injuries.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 681-692 ◽  
Author(s):  
Lili Zhang ◽  
Mengmeng Liu ◽  
Xiaokang Zhou ◽  
Yi Liu ◽  
Bo Jing ◽  
...  

Background/Aims: Bone marrow adipogenesis is one of the major characteristics of aged bone. Bone marrow mesenchymal stem cells (BMMSCs) prefer to differentiate into adipocytes instead of osteoblasts in the bone marrow cavity in aged hosts. The mechanism of formation and function of adipocytes in aged bone marrow needs further investigation. Osteoprotegerin (OPG) is a member of the tumor necrosis factor receptor (TNFR) super family, and it can inhibit the activities of osteoclasts. We found that adipocyte numbers increased in the bone marrow of Opg knockout mice. In this study, we investigated the role of OPG in the differentiation of BMMSCs and bone marrow adipogenesis. Methods: Histological analyses were performed on the bone tissues of Opg knockout (Opg-KO) and wild-type (WT) mice of different ages. BMMSCs obtained from mice were cultured in vitro to evaluate their differentiation abilities. Results: With aging, the expression of Opg in the bone marrow of WT mice markedly decreased, but that of the adipogenic specific transcription factor peroxisome proliferator-activated receptor γ (Ppar-γ) increased. Adipocytes formed in the bone marrow of Opg-KO mice at a relative young age, and the number of adipocytes increased dramatically with age. Compared with the WT control, the osteogenic differentiation of Opg-KO BMMSCs decreased, but the adipogenic differentiation increased. Moreover, exogenous OPG could inhibit the adipogenic differentiation and promote the osteogenic differentiation of Opg-KO BMMSCs in vitro. Conclusions: OPG plays an important role in regulating BMMSC differentiation and bone marrow adipogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


Sign in / Sign up

Export Citation Format

Share Document