scholarly journals The Role of the Medial and Central Amygdala in Stress-Induced Suppression of Pulsatile LH Secretion in Female Rats

Endocrinology ◽  
2011 ◽  
Vol 152 (2) ◽  
pp. 545-555 ◽  
Author(s):  
Yuanshao Lin ◽  
Xiaofeng Li ◽  
Micol Lupi ◽  
James S. Kinsey-Jones ◽  
Bei Shao ◽  
...  

Abstract Stress exerts profound inhibitory effects on reproductive function by suppressing the pulsatile release of GnRH and therefore LH. Although the mechanisms by which stressors disrupt the hypothalamic GnRH pulse generator remain to be fully elucidated, numerous studies have implicated the amygdala, especially its medial (MeA) and central nuclei (CeA), as key modulators of the neuroendocrine response to stress. In the present study, we investigated the roles of the MeA and CeA in stress-induced suppression of LH pulses. Ovariectomized rats received bilateral ibotenic acid or sham lesions targeting the MeA or CeA; blood samples (25 μl) were taken via chronically implanted cardiac catheters every 5 min for 6 h for the measurement of LH pulses. After 2 h of baseline sampling, the rats were exposed to either: restraint (1 h), insulin-induced hypoglycemia (IIH) (0.3 U/kg, iv), or lipopolysaccharide (LPS) (25 μg/kg, iv) stress. The restraint but not IIH or LPS stress–induced suppression of LH pulses was markedly attenuated by the MeA lesions. In contrast, CeA lesioning attenuated LPS, but not restraint or IIH stress–induced suppression of LH pulses. Moreover, after restraint stress, the number of Fos-positive neurons and the percentage of glutamic acid decarboxylase67 neurons expressing Fos was significantly greater in the GnRH-rich medial preoptic area (mPOA) of rats with intact, rather than lesioned, MeA. These data indicate that the MeA and CeA play key roles in psychogenic and immunological stress-induced suppression of the GnRH pulse generator, respectively, and the MeA-mediated effect may involve γ-aminobutyric acid ergic signaling within the mPOA.

2015 ◽  
Vol 55 (1) ◽  
pp. 9-19 ◽  
Author(s):  
XiaoFeng Li ◽  
Bei Shao ◽  
ChengCheng Lin ◽  
Kevin T O'Byrne ◽  
YuanShao Lin

Stress exerts profound inhibitory effects on reproductive function by suppression of the pulsatile release of GnRH and therefore LH. Besides the corticotrophin-releasing factor (CRF), this effect also might be mediated via GABAergic signaling within the arcuate nucleus (ARC) since its inhibitory effects on LH pulses and increased activity during stress. In the present study, we investigated the role of endogenous GABAergic signaling within the ARC in stress-induced suppression of LH pulses. Ovariectomised oestradiol-replaced rats were implanted with bilateral and unilateral cannulae targeting toward the ARC and lateral cerebral ventricle respectively. Blood samples (25 μl) were taken via chronically implanted cardiac catheters every 5 min for 6 h for measurement of LH pulses. Intra-ARC infusion of GABAAreceptor antagonist, bicuculline (0.2 pmol in 200 nl artificial cerebrospinal fluid (aCSF) each side, three times at 20-min intervals) markedly attenuated the inhibitory effect of lipopolysaccharide (LPS; 25 μg/kg i.v.) but not restraint (1 h) stress on pulsatile LH secretion. In contrast, restraint but not LPS stress-induced suppression of LH pulse frequency was reversed by intra-ARC administration of GABABR antagonist, CGP-35348 (1.5 nmol in 200 nl aCSF each side, three times at 20-min intervals). Moreover, intra-ARC application of either bicuculline or CGP-35348 attenuated the inhibitory effect of CRF (1 nmol in 4 μl aCSF, i.c.v.) on the LH pulses. These data indicate a pivotal and differential role of endogenous GABAAand GABABsignaling mechanisms in the ARC with respect to mediating immunological and psychological stress-induced suppression of the GnRH pulse generator respectively.


2006 ◽  
Vol 190 (3) ◽  
pp. 593-600 ◽  
Author(s):  
Beverly A S Reyes ◽  
Hiroko Tsukamura ◽  
Helen I’Anson ◽  
Maria Amelita C Estacio ◽  
Kanjun Hirunagi ◽  
...  

Fasting-induced LH suppression is augmented by estrogen in female rats. We investigated the temporal changes in the number of estrogen receptor α (ERα)-immunoreactive (ir) cells in various brain regions in ovariectomized rats fasted for 6, 24, 30, and 48 h, commencing at 1300 h. We also determined the anatomical relationship of ERα immunoreactivity and dopamine-β-hydroxylase (DBH) neurons in the A2 region of the nucleus of the solitary tract (NTS) and the paraventricular nucleus (PVN). The number of ERα-ir cells significantly increased after 30 h from the onset of fasting in the PVN and NTS compared with the unfasted controls and was sustained until 48 h. In the A2 region of 48-h fasted rats, 46.75% DBH-ir cells expressed ERα, and this was significantly higher than in unfasted controls (8.16% DBH-ir cells expressed ERα). In the PVN, most ERα-ir neurons were juxtaposed with DBH-ir varicosities. These results suggest that ERα is expressed in specific brain regions at a defined time from the onset of fasting. In addition, the anatomical relationship of noradrenergic and ERα-ir neurons in the A2 region and PVN may suggest a role for estrogen in increasing the activity of noradrenergic neurons in the A2 region and enhancing sensitivity of the PVN to noradrenergic input arising from the lower brainstem and thereby augmenting the suppression of LH secretion during fasting.


Reproduction ◽  
2000 ◽  
pp. 39-45 ◽  
Author(s):  
LC Gonzalez ◽  
L Pinilla ◽  
M Tena-Sempere ◽  
C Dieguez ◽  
FF Casanueva ◽  
...  

Recent data indicate that leptin is involved in the control of reproductive function. Experiments were carried out to analyse the role of endogenous leptin in the regulation of LH and prolactin secretion during the afternoon of pro-oestrus and that induced by ovarian steroids in ovariectomized rats. In the first experiment, cyclic female rats were implanted with intra-auricular and intracerebroventricular (i.c.v.) cannulae and, at pro-oestrus, were injected (i.c.v.) with 10 microliters normal rabbit serum or leptin antiserum (at 13:00 and 14:00 h). Blood samples were obtained at 10:00 h and at intervals of 1 h between 13:00 and 20:00 h. In the second experiment, female rats in pro-oestrus were injected with normal rabbit serum or leptin antiserum at 16:00 and 18:00 h and blood samples were taken every 10 min between 18:00 and 20:00 h. In the third experiment, adult female rats that had been ovariectomized 2 weeks before were implanted with intra-auricular and i.c.v. cannulae and treated with oestradiol benzoate (30 micrograms s.c.) at 10:00 h and progesterone (2 mg s.c.) 48 h later. Normal rabbit serum (10 microliters) or leptin antiserum (10 microliters) were injected (i.c.v.) at 13:00 and 14:00 h, and blood samples were obtained at 10:00 h and at intervals of 1 h between 13:00 and 20:00 h. In the fourth experiment, hemipituitaries from ovariectomized steroid-treated female rats were incubated in the presence of leptin116-130 (an active fragment of the native molecule), GnRH or leptin + GnRH. Prolactin and LH secretion during the afternoon of pro-oestrus in females treated with leptin antiserum was similar to that observed in animals injected with normal rabbit serum. In ovariectomized female rats, the steroid-induced LH surge increased slightly after administration of leptin antiserum, whereas the prolactin surge remained unchanged. In vitro, leptin116-130 (10(-5) to 10(-8) mol l-1) inhibited LH secretion and modulated the effect of GnRH on LH release, depending on the concentration of GnRH: leptin116-130 (10(-6) mol l-1) reduced the effectiveness of 10(-7) mol GnRH l-1 and increased that of 10(-9) mol GnRH l-1. In conclusion, these experiments indicate that acute immunoneutralization of endogenous leptin does not interfere with spontaneous or steroid-induced LH and prolactin surges. In addition, the finding that leptin116-130 inhibited LH release and modulated the effectiveness of GnRH in vitro provides evidence of the direct modulatory role of leptin on LH secretion acting at the pituitary.


1982 ◽  
Vol 94 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Csilla Ruzsas ◽  
Patrizia Limonta ◽  
L. Martini

The role of brain serotonin (5-hydroxytryptamine, 5-HT) in the control of LH, FSH and prolactin secretion was studied in two groups of experimental animals: intact adult male rats and ovariectomized adult female rats. 5-Hydroxytryptophan (5-HTP), a precursor of serotonin synthesis, and fluoxetine, a specific inhibitor of 5-HT uptake, were given either alone or together. 5-Hydroxytryptophan (50 mg/kg) was administered intraperitoneally and fluoxetine (20 μg/rat) was given into one of the lateral ventricles of the brain. Neither 5-HTP nor fluoxetine given alone affected LH secretion but combined treatment with the two drugs elicited a significant increase in serum LH levels in both intact male and ovariectomized female rats. Fluoxetine and 5-HTP, alone or together, did not modify FSH secretion in either kind of animal. In intact males and in ovariectomized females, 5-HTP induced a significant increase in prolactin release; fluoxetine alone was ineffective. In male animals treated with fluoxetine plus 5-HTP, serum prolactin levels increased but such an increase was lower than that found in the animals treated only with 5-HTP. In ovariectomized rats, the combined treatment induced an increase in serum prolactin levels similar to that found in animals treated with 5-HTP alone. These data suggested that brain serotonin exerts a stimulating effect on LH secretion in both intact male and ovariectomized rats, but that it does not play any role in the control of FSH release in either kind of animal and that central serotoninergic pathways participate in the stimulating control of prolactin release from the anterior pituitary gland. However, some of the data also suggested the possibility of the existence in the brain of serotoninergic systems inhibiting prolactin secretion.


2002 ◽  
Vol 173 (1) ◽  
pp. 113-122 ◽  
Author(s):  
AI Turner ◽  
BJ Canny ◽  
RJ Hobbs ◽  
JD Bond ◽  
IJ Clarke ◽  
...  

There are sex differences in the response to stress and in the influence of stress on reproduction which may be due to gonadal steroids but the nature of these differences and the role of the gonads are not understood. We tested the hypotheses that sex and the presence/absence of gonads (gonadal status) will influence the cortisol response to injection of ACTH, insulin-induced hypoglycaemia and isolation/restraint stress, and that sex and gonadal status will influence the secretion of LH in response to isolation/restraint stress. Four groups of sheep were used in each of three experiments: gonad-intact rams, gonadectomised rams, gonad-intact ewes in the mid-luteal phase of the oestrous cycle and gonadectomised ewes. In Experiment 1 (n=4/group), jugular blood samples were collected every 10 min for 6 h; after 3 h, two animals in each group were injected (i.v.) with ACTH and the remaining two animals were injected (i.v.) with saline. Treatments were reversed 5 days later so that every animal received both treatments. Experiment 2 (n=4/group) used a similar schedule except that insulin was injected (i.v.) instead of ACTH. In Experiment 3 (n=5/group), blood samples were collected every 10 min for 16 h on a control day and again 2 weeks later when, after 8 h of sampling, all sheep were isolated and restrained for 8 h. Plasma cortisol was significantly (P<0.05) elevated following injection of ACTH or insulin and during isolation/restraint stress. There were no significant differences between the sexes in the cortisol response to ACTH. Rams had a greater (P<0.05) cortisol response to insulin-induced hypoglycaemia than ewes while ewes had a greater (P<0.05) cortisol response to isolation/restraint stress than rams. There was no effect of gonadal status on these parameters. Plasma LH was suppressed (P<0.05) in gonadectomised animals during isolation/restraint stress but was not affected in gonad-intact animals, and there were no differences between the sexes. Our results show that the sex that has the greater cortisol response to a stressor depends on the stressor imposed and that these sex differences are likely to be at the level of the hypothalamo-pituitary unit rather than at the adrenal gland. Since there was a sex difference in the cortisol response to isolation/restraint, the lack of a sex difference in the response of LH to this stress suggests that glucocorticoids are unlikely to be a major mediator of the stress-induced suppression of LH secretion.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 323-335 ◽  
Author(s):  
Bruna Kalil ◽  
Aline B. Ribeiro ◽  
Cristiane M. Leite ◽  
Ernane T. Uchôa ◽  
Ruither O. Carolino ◽  
...  

Abstract In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 567
Author(s):  
Wenyu Si ◽  
Hailing Li ◽  
Tiezhu Kang ◽  
Jing Ye ◽  
Zhiqiu Yao ◽  
...  

This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 μg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 μg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.


2006 ◽  
Vol 191 (1) ◽  
pp. 339-348 ◽  
Author(s):  
Atsushi Fukushima ◽  
Ping Yin ◽  
Maho Ishida ◽  
Nobuhiro Sugiyama ◽  
Jun Arita

During lactation, the suckling stimulus exerts profound influences on neuroendocrine regulation in nursing rats. We examined the acute effect of pup removal on the estrogen-induced surge of LH secretion in ovariectomized lactating rats. Lactating and nonlactating cyclic female rats were given an estradiol-containing capsule after ovariectomy, and blood samples were collected through an indwelling catheter for serum LH determinations. In lactating, freely suckled ovariectomized rats, estrogen treatment induced an afternoon LH surge with a magnitude and timing comparable to those seen in nonlactating rats. Removal of pups from the lactating rats at 0900, 1100, or 1300 h, but not at 1500 h, suppressed the estrogen-induced surge that normally occurs in the afternoon of the same day. The suppressive effect of pup removal at 0900 h was completely abolished when the pups were returned by 1400 h. In contrast, pup removal was ineffective in abolishing the stimulatory effect of progesterone on LH surges. Double immunohistochemical staining for gonadotropin-releasing hormone (GnRH) and c-Fos, a marker for neuronal activation, revealed a decrease, concomitantly with the suppression of LH surges, in the number of c-Fos-immunoreactive GnRH neurons in the preoptic regions of nonsuckled rats. An LH surge was restored in nonsuckled rats when 0.1 μg oxytocin was injected into the third ventricle three times at 1-h intervals during pup removal. These results suggest that the GnRH surge generator of lactating rats requires the suckling stimulus that is not involved in nonlactating cyclic female rats.


1984 ◽  
Vol 107 (2) ◽  
pp. 199-203
Author(s):  
A. Miyake ◽  
K. Tasaka ◽  
T. Aono

Abstract. The direct effects of oestradiol-17β (E2) on pituitary luteinizing hormone (LH) release and the role of norepinephrine (NE) in E2-induced gonadtrophin release were examined in a sequential double chamber perifusion system by perifusing the mediobasal hypothalami (MBH) and/or pituitaries excised from normally cycling female rats. Administration of E2 induced significant release (70–160% increase, P < 0.05) of LH from the pituitary of rats in pro-oestrus, but not in other stages of the oestrous cycle. When the MBH and the pituitary were perifused in sequence, E2 induced significant release of LH in all stages of the oestrous cycle except oestrus. When the pituitary from rats in dioestrus II was perifused alone with medium containing 200 ng/ml NE, significant release of LH (80–170% increase, P < 0.05) was observed after the administration of E2. The E2-induced LH release in pro-oestrus was completely abolished by perifusion with medium containing diethyldithiocarbamate, an inhibitor of NE synthesis. These findings suggest that NE may be involved in changes of pituitary responsiveness in LH secretion to oestrogen during the rat oestrous cycle.


Endocrinology ◽  
2014 ◽  
Vol 155 (10) ◽  
pp. 3934-3944 ◽  
Author(s):  
X. F. Li ◽  
M. H. Hu ◽  
S. Y. Li ◽  
C. Geach ◽  
A. Hikima ◽  
...  

Abstract Prolonged exposure to environmental stress activates the hypothalamic-pituitary-adrenal (HPA) axis and generally disrupts the hypothalamic-pituitary-gonadal axis. Because CRF expression in the central nucleus of the amygdala (CeA) is a key modulator in adaptation to chronic stress, and central administration of CRF inhibits the hypothalamic GnRH pulse generator, we tested the hypothesis that overexpression of CRF in the CeA of female rats alters anxiety behavior, dysregulates the HPA axis response to stress, changes pubertal timing, and disrupts reproduction. We used a lentiviral vector to increase CRF expression site specifically in the CeA of preweaning (postnatal day 12) female rats. Overexpression of CRF in the CeA increased anxiety-like behavior in peripubertal rats shown by a reduction in time spent in the open arms of the elevated plus maze and a decrease in social interaction. Paradoxically, puberty onset was advanced but followed by irregular estrous cyclicity and an absence of spontaneous preovulatory LH surges associated with proestrous vaginal cytology in rats overexpressing CRF. Despite the absence of change in basal corticosterone secretion or induced by stress (lipopolysaccharide or restraint), overexpression of CRF in the CeA significantly decreased lipopolysaccharide, but not restraint, stress-induced suppression of pulsatile LH secretion in postpubertal ovariectomized rats, indicating a differential stress responsivity of the GnRH pulse generator to immunological stress and a potential adaptation of the HPA axis to chronic activation of amygdaloid CRF. These data suggest that the expression profile of this key limbic brain CRF system might contribute to the complex neural mechanisms underlying the increasing incidence of early onset of puberty on the one hand and infertility on the other attributed to chronic stress in modern human society.


Sign in / Sign up

Export Citation Format

Share Document