scholarly journals Role of IGFBP-3 in the Regulation of β-Cell Mass during Obesity: Adipose Tissue/β-Cell Cross Talk

Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Nuria Palau ◽  
Sandra A. Rebuffat ◽  
Jordi Altirriba ◽  
Sandra Piquer ◽  
Felicia A. Hanzu ◽  
...  

In obesity an increase in β-cell mass occurs to cope with the rise in insulin demand. This β-cell plasticity is essential to avoid the onset of hyperglycemia, although the molecular mechanisms that regulate this process remain unclear. This study analyzed the role of adipose tissue in the control of β-cell replication. Using a diet-induced model of obesity, we obtained conditioned media from three different white adipose tissue depots. Only in the adipose tissue depot surrounding the pancreas did the diet induce changes that led to an increase in INS1E cells and the islet replication rate. To identify the factors responsible for this proliferative effect, adipose tissue gene expression analysis was conducted by microarrays and quantitative RT-PCR. Of all the differentially expressed proteins, only the secreted ones were studied. IGF binding protein 3 (Igfbp3) was identified as the candidate for this effect. Furthermore, in the conditioned media, although the blockage of IGFBP3 led to an increase in the proliferation rate, the blockage of IGF-I receptor decreased it. Taken together, these data show that obesity induces specific changes in the expression profile of the adipose tissue depot surrounding the pancreas, leading to a decrease in IGFBP3 secretion. This decrease acts in a paracrine manner, stimulating the β-cell proliferation rate, probably through an IGF-I-dependent mechanism. This cross talk between the visceral-pancreatic adipose tissue and β-cells is a novel mechanism that participates in the control of β-cell plasticity.

2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


2012 ◽  
pp. 235-243 ◽  
Author(s):  
Norman Balcazar Morales ◽  
Cecilia Aguilar de Plata

Growth factors, insulin signaling and nutrients are important regulators of β-cell mass and function. The events linking these signals to regulation of β-cell mass are not completely understood. Recent findings indicate that mTOR pathway integrates signals from growth factors and nutrients with transcription, translation, cell size, cytoskeleton remodeling and mitochondrial metabolism. mTOR is a part of two distinct complexes; mTORC1 and mTORC2. The mammalian TORC1 is sensitive to rapamycin and contains Raptor, deptor, PRAS40 and the G protein β-subunit-like protein (GβL). mTORC1 activates key regulators of protein translation; ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E-binding protein 1. This review summarizes current findings about the role of AKT/mTORC1 signaling in regulation of pancreatic β cell mass and proliferation. mTORC1 is a major regulator of β-cell cycle progression by modulation of cyclins D2, D3 and cdk4/cyclin D activity. These studies uncovered key novel pathways controlling cell cycle progression in β-cells in vivo. This information can be used to develop alternative approaches to expand β-cell mass in vivo and in vitro without the risk of oncogenic transformation. The acquisition of such knowledge is critical for the design of improved therapeutic strategies for the treatment and cure of diabetes as well as to understand the effects of mTOR inhibitors in β-cell function.


1997 ◽  
Vol 152 (3) ◽  
pp. 455-464 ◽  
Author(s):  
L E L Katz ◽  
A Bhala ◽  
E Camron ◽  
S E Nunn ◽  
R L Hintz ◽  
...  

The IGFs are mitogenic agents which are closely linked to regulatory processes in carbohydrate metabolism. Because limited information is available on the occurrence of the IGF system in the pancreatic β-cell milieu, we evaluated the presence of IGFs, IGF receptors, and IGF-binding proteins (IGFBPs) in the β-cell lines βTC3 and HIT T-15. Serum-free conditioned media (SFCM) from βTC3 cells contained IGF-II at concentrations greater than 100 ng/ml. High (15 kDa) and low (7·5 kDa) molecular weight IGF-II were detected both by column chromatography followed by RIA and by immunoblotting. GH (10–1000 ng/ml) conditioning of βTC3 cells stimulated IGF-II secretion in a dose-dependent manner. IGF-II mRNA was detected in βTC3 cells using Northern blots, and also showed a GH-dependent relationship. IGF-II peptide was detected in SFCM from HIT cells, albeit at lower concentrations. To evaluate the presence of IGF receptors in β-cell lines, affinity cross-linking studies were performed on βTC3 cells, demonstrating type I IGF receptors which bound iodinated IGF-II with high affinity, iodinated IGF-I with lesser affinity, and had minimal appreciable binding to iodinated insulin. Type II IGF receptors were not detected. SFCM from βTC3 and HIT cells was subjected to Western ligand blotting, which disclosed the presence of two major IGFBPs of 29 kDa and 24 kDa, characteristic of IGFBP-2 and IGFBP-4. The identity of the specific IGFBPs was confirmed by immunoprecipitation and Northern blotting. Varying the glucose concentration had no significant effect on the levels of IGFBPs, nor did preconditioning with GH, IGF-I, IGF-II, insulin, or glucagon. Levels of both IGFBPs in βTC3 cell-conditioned media increased in the presence of dexamethasone at concentrations of 10−6 m or greater. In summary, we present evidence that β-cell lines comprise an environment for GH and IGF action. We speculate that IGFs, their receptors and binding proteins function as a complex interactive system which regulates β-cell growth and function. Journal of Endocrinology (1997) 152, 455–464


2010 ◽  
Vol 299 (1) ◽  
pp. C1-C6 ◽  
Author(s):  
Yoshio Fujitani ◽  
Takashi Ueno ◽  
Hirotaka Watada

Autophagy is an evolutionarily conserved machinery for degradation and recycling of various cytoplasmic components such as long-lived proteins and organelles. In pancreatic β-cells, as in most other cells, autophagy is also important for the low basal turnover of ubiquitinated proteins and damaged organelles under normal conditions. Insulin resistance results in upregulation of autophagic activity in β-cells. Induced autophagy in β-cells plays a pivotal role in the adaptive expansion of β-cell mass. Nevertheless, it is not clear whether autophagy is protective or detrimental in response to cellular stresses in β-cells. In this review, we describe the crucial roles of autophagy in normal function of β-cells and discuss how dysfunction of the autophagic machinery could lead to the development of diabetes mellitus.


2020 ◽  
Author(s):  
Ada Admin ◽  
Shoko Takei ◽  
Shuichi Nagashima ◽  
Akihito Takei ◽  
Daisuke Yamamuro ◽  
...  

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), statins, which are used to prevent cardiovascular diseases, are associated with a modest increase in the risk of new-onset diabetes mellitus. To investigate the role of HMGCR in the development of β cells and glucose homeostasis, we deleted <i>Hmgcr</i> in a β cell-specific manner by using the Cre-loxP technique. Mice lacking <i>Hmgcr</i> in β cells (β-KO) exhibited hypoinsulinemic hyperglycemia as early as postnatal day 9 (P9) due to decreases in both β cell mass and insulin secretion. Ki67 positive cells were reduced in β-KO mice at P9, thus β cell mass reduction was caused by proliferation disorder immediately after birth. The mRNA expression of <i>neurogenin3 (Ngn3)</i>, which is transiently expressed in endocrine progenitors of the embryonic pancreas, was maintained despite a striking reduction in the expression of β cell-associated genes, such as <i>insulin</i>, <i>Pancreatic and duodenal homeobox 1</i> <i>(Pdx1)</i> and <i>MAF BZIP transcription factor A (</i><i>Mafa)</i> in the islets from β-KO mice. Histological analyses revealed dysmorphic islets with markedly reduced numbers of β cells, some of which were also positive for glucagon. In conclusion, HMGCR plays critical roles not only in insulin secretion but also in the development of β cells in mice.


Sign in / Sign up

Export Citation Format

Share Document