scholarly journals Endoplasmic Reticulum Stress Induces the Expression of Fetuin-A to Develop Insulin Resistance

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 2974-2984 ◽  
Author(s):  
Horng-Yih Ou ◽  
Hung-Tsung Wu ◽  
Hao-Chang Hung ◽  
Yi-Ching Yang ◽  
Jin-Shang Wu ◽  
...  

Fetuin-A is a biomarker reported to be important in many metabolic disorders, including obesity, diabetes, and hepatic steatosis. Although it is well known that fetuin-A is increased in diabetes and nonalcoholic fatty liver disease (NAFLD), the levels of fetuin-A in diabetic patients with NAFLD are unknown. Furthermore, the regulation of fetuin-A expression is still obscure. In this study, a total of 180 age- and sex-matched subjects with normal glucose tolerance, NAFLD, newly diagnosed diabetes (NDD), and NDD with NAFLD were recruited. We found that the levels of fetuin-A were significantly increased in NDD with NAFLD as compared with NDD or NAFLD subjects. We further used HepG2 cells to investigate the regulation of fetuin-A. Treatment with endoplasmic reticulum (ER) stress activator, thapsigargin, increased the expression of fetuin-A mRNA and protein in a time- and dose-dependent manner. Pretreatment with ER stress inhibitor, 4-phenylbutyrate, reversed high glucose or palmitate-induced fetuin-A expression. Moreover, treatment with 4-phenylbutyrate in both streptozotocin-induced and high-fat diet-induced diabetic mice not only decreased hepatic fetuin-A levels but also improved hyperglycemia. Taken together, we found that fetuin-A levels were increased in diabetes patients with NAFLD. Moreover, ER stress induced by high glucose and palmitate increased the expression of fetuin-A and further contributed to the development of insulin resistance.

Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2164-2177 ◽  
Author(s):  
Caroline S. Achard ◽  
D. Ross Laybutt

Chronically elevated fatty acids contribute to insulin resistance through poorly defined mechanisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mechanism required for cell adaptation and survival. We aimed to distinguish the adaptive and deleterious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepatocytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signaling. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmitate exposure induces an adaptive UPR that enhances insulin signaling and protects against the effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to insulin resistance and metabolic dysregulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-shan Wan ◽  
Xiang-hong Lu ◽  
Ye-cheng Xiao ◽  
Yuan Lin ◽  
Hong Zhu ◽  
...  

Fibroblast growth factor 21 (FGF21) is an important endogenous regulator involved in the regulation of glucose and lipid metabolism. FGF21 expression is strongly induced in animal and human subjects with metabolic diseases, but little is known about the molecular mechanism. Endoplasmic reticulum (ER) stress plays an essential role in metabolic homeostasis and is observed in numerous pathological processes, including type 2 diabetes, overweight, nonalcoholic fatty liver disease (NAFLD). In this study, we investigate the correlation between the expression of FGF21 and ER stress. We demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner. FGF21 is the target gene for activating transcription factor 4 (ATF4) and CCAAT enhancer binding protein homologous protein (CHOP). Suppression of CHOP impaired the transcriptional activation of FGF21 by TG-induced ER stress in CHOP−/− mouse primary hepatocytes (MPH), and overexpression of ATF4 and CHOP resulted in FGF21 promoter activation to initiate the transcriptional programme. In mRNA stability assay, we indicated that ER stress increased the half-life of mRNA of FGF21 significantly. In conclusion, FGF21 expression is regulated by ER stress via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.


2021 ◽  
Vol 9 (1) ◽  
pp. e001884
Author(s):  
Zhongwei Liu ◽  
Haitao Zhu ◽  
Chunhui He ◽  
Ting He ◽  
Shuo Pan ◽  
...  

IntroductionGlucose-induced insulin resistance is a typical character of diabetes. Nicorandil is now widely used in ischemic heart disease. Nicorandil shows protective effects against oxidative and endoplasmic reticulum (ER) stress, which are involved in insulin resistance. Here, we investigated mechanisms of nicorandil’s novel pharmacological activity on insulin resistance in diabetes.Research design and methodsNicorandil was administrated to streptozotocin-induced animals with diabetes and high glucose exposed skeletal muscle cells. Insulin resistance and glucose tolerance were evaluated. Molecular mechanisms concerning oxidative stress, ER stress signaling activation and glucose uptake were assessed.ResultsNicorandil attenuated high glucose-induced insulin resistance without affecting fasting blood glucose and glucose tolerance in whole body and skeletal muscle in rats with diabetes. Nicorandil treatment suppressed protein kinase C/nicotinamide adenine dinucleotide phosphate oxidases system activities by reducing cytoplasmic free calcium level in skeletal muscle cells exposed to high glucose. As a result, the oxidative stress-mediated ER stress protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α/activating transcription factor 4/CEBP homologous protein/tribbles homolog (TRB)3 signaling pathway activation was inhibited. Nicorandil downregulated expression of TRB3 and thus facilitated Akt phosphorylation in response to insulin stimulation, leading to glucose transporter4 plasma membrane translocation which promoted glucose uptake capability of skeletal muscle cells.ConclusionsBy reducing cytoplasmic calcium, nicorandil alleviated high glucose-induced insulin resistance by inhibiting oxidative stress-mediated ER stress PERK pathway.


2021 ◽  
Author(s):  
Takayoshi Sasako ◽  
Kohjiro Ueki

Dynamic metabolic changes occur in the liver during the transition between fasting and eating, which is mainly mediated by insulin, a hormone to promote anabolism and suppress catabolism. In obesity and diabetes, insulin resistance is induced via various mechanisms, and among them is endoplasmic reticulum (ER) stress. We recently reported that eating induces transient ER stress and consequent ER stress response in the liver. During eating, expression of Sdf2l1, an ER-resident molecule involved in ER stress-associated degradation, is induced as a part of ER stress response. XBP-1s regulates expression of Sdf2l1 at the transcription level, and Sdf2l1 terminates eating-induced ER stress in the liver, consequently regulating glucose and lipid metabolism. In obesity and diabetes, however, ER stress response is impaired, partly because insulin-mediated translocation of XBP-1s to the nucleus is suppressed, which results in further excessive ER stress. Induction of Sdf2l1 by XBP-1s is highly down-regulated, but restoration of Sdf2l1 ameliorates glucose intolerance and fatty liver. In diabetic patients, hepatic insulin resistance induces enhanced ER stress and ER stress response failure in the liver, which in turn promote hepatic fibrosis and contribute to the development of steatohepatitis comorbid with diabetes.


2005 ◽  
Vol 75 (5) ◽  
pp. 307-311
Author(s):  
Sakuta ◽  
Suzuki ◽  
Yasuda ◽  
Ito

Limited data suggest that folate levels are higher in patients with type 2 diabetes than in subjects with normal glucose tolerance (NGT). We compared the fasting plasma folate, glucose (FPG), body mass index (BMI), and supplementary vitamin use among male subjects with NGT, those with impaired glucose tolerance (IGT), those with newly diagnosed type 2 diabetes, and those with previously diagnosed type 2 diabetes. Plasma folate of patients with newly diagnosed diabetes and that of patients with previously diagnosed diabetes was significantly higher than that of NGT subjects (p < 0.001). Prevalence of vitamin use was lower in newly diagnosed or previously diagnosed diabetic patients compared with non-diabetic subjects. Self-rated vegetable intake was similar among the four groups. FPG, BMI, triglycerides, and systolic blood pressure correlated with plasma folate levels independently of lifestyle factors studied. These results suggest that plasma folate levels are elevated in male diabetic patients independently of health-conscious behavior that is recommended for diabetic people.


2012 ◽  
Vol 302 (6) ◽  
pp. E654-E665 ◽  
Author(s):  
Banumathi K. Cole ◽  
Norine S. Kuhn ◽  
Shamina M. Green-Mitchell ◽  
Kendall A. Leone ◽  
Rebekah M. Raab ◽  
...  

Central obesity is associated with chronic inflammation, insulin resistance, β-cell dysfunction, and endoplasmic reticulum (ER) stress. The 12/15-lipoxygenase enzyme (12/15-LO) promotes inflammation and insulin resistance in adipose and peripheral tissues. Given that obesity is associated with ER stress and 12/15-LO is expressed in adipose tissue, we determined whether 12/15-LO could mediate ER stress signals. Addition of 12/15-LO lipid products 12(S)-HETE and 12(S)-HPETE to differentiated 3T3-L1 adipocytes induced expression and activation of ER stress markers, including BiP, XBP-1, p-PERK, and p-IRE1α. The ER stress inducer, tunicamycin, upregulated ER stress markers in adipocytes with concomitant 12/15-LO activation. Addition of a 12/15-LO inhibitor, CDC, to tunicamycin-treated adipocytes attenuated the ER stress response. Furthermore, 12/15-LO-deficient adipocytes exhibited significantly decreased tunicamycin-induced ER stress. 12/15-LO action involves upregulation of interleukin-12 (IL-12) expression. Tunicamycin significantly upregulated IL-12p40 expression in adipocytes, and IL-12 addition increased ER stress gene expression; conversely, LSF, an IL-12 signaling inhibitor, and an IL-12p40-neutralizing antibody attenuated tunicamycin-induced ER stress. Isolated adipocytes and liver from 12/15-LO-deficient mice fed a high-fat diet revealed a decrease in spliced XBP-1 expression compared with wild-type C57BL/6 mice on a high-fat diet. Furthermore, pancreatic islets from 12/15-LO-deficient mice showed reduced high-fat diet-induced ER stress genes compared with wild-type mice. These data suggest that 12/15-LO activity participates in ER stress in adipocytes, pancreatic islets, and liver. Therefore, reduction of 12/15-LO activity or expression could provide a new therapeutic target to reduce ER stress and downstream inflammation linked to obesity.


2005 ◽  
Vol 25 (17) ◽  
pp. 7522-7533 ◽  
Author(s):  
Zhi-Ming Huang ◽  
Thomas Tan ◽  
Hiderou Yoshida ◽  
Kazutoshi Mori ◽  
Yanjun Ma ◽  
...  

ABSTRACT IRE1-alpha is an integral membrane protein of the endoplasmic reticulum (ER) that is a key sensor in the cellular transcriptional response to stress in the ER. Upon induction of ER stress, IRE1-alpha is activated, resulting in the synthesis of the active form of the transcription factor XBP1 via IRE1-mediated splicing of its mRNA. In this report, we have examined the role of IRE1-alpha and XBP1 in activation of the hepatitis B virus S promoter by ER stress. Cotransfection experiments revealed that overexpression of either IRE1-alpha or XBP1 activated this promoter. Conversely, cotransfected dominant-negative IRE1-alpha or small interfering RNA directed against XBP1 decreased the activation of the S promoter by ER stress, confirming an important role for the IRE1-alpha/XBP1 signaling pathway in activation of the S promoter. However, XBP1 does not bind directly to the S promoter; rather, a novel S promoter-binding complex that does not contain XBP1 is induced in cells undergoing ER stress in an XBP1-dependent manner. This complex, as well as transcriptional activation of the S promoter, is induced by ER stress in hepatocytes but not in fibroblasts, despite the presence of active XBP1 in the latter. Thus, the hepatitis B virus S promoter responds to a novel, cell type-restricted transcriptional pathway downstream of IRE1-alpha and XBP1.


Shock ◽  
2010 ◽  
Vol 33 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Gerd G. Gauglitz ◽  
Stefanie Halder ◽  
Darren F. Boehning ◽  
Gabriela A. Kulp ◽  
David N. Herndon ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Takehiko Kujiraoka ◽  
Yasushi Satoh ◽  
Makoto Ayaori ◽  
Yasunaga Shiraishi ◽  
Yuko Arai-Nakaya ◽  
...  

Background Insulin signaling comprises 2 major cascades, the IRS/PI3K/Akt and Ras/Raf/MEK/ERK pathways. Many studies on the tissue-specific effects of the former pathway had been conducted, however, the role of the latter cascade in tissue-specific insulin resistance had not been investigated. High glucose/fatty acid toxicity, inflammation and oxidative stress, all of which are associated with insulin resistance, can activate ERK. Liver plays a central role of metabolism and hepatosteatosis (HST) is associated with vascular diseases. The aim of this study is to elucidate the role of hepatic ERK2 in HST, metabolic remodeling and endothelial dysfunction. Methods Serum biomarkers of vascular complications in human were compared between subjects with and without HST diagnosed by echography for regular medical checkup. Next, we created liver-specific ERK2 knockout mice (LE2KO) and fed them with a high-fat/high-sucrose diet (HFHSD) for 20 weeks. The histological analysis, the expression of hepatic sarco/endoplasmic reticulum (ER) Ca 2+ -ATPase 2 (SERCA2) and glucose-tolerance/insulin-sensitivity (GT/IS) were tested. Vascular superoxide production and endothelial function were evaluated with dihydroethidium staining and isometric tension measurement of aorta. Results The presence of HST significantly increased HOMA-IR, an indicator of insulin resistance or atherosclerotic index in human. HFHSD-fed LE2KO revealed a marked exacerbation in HST and metabolic remodeling represented by the impairment of GT/IS, elevated serum free fatty acid and hyperhomocysteinemia without changes in body weight, blood pressure and serum cholesterol/triglyceride levels. In the HFHSD-fed LE2KO, mRNA and protein expressions of hepatic SERCA2 were significantly decreased, which resulted in hepatic ER stress. Induction of vascular superoxide production and remarkable endothelial dysfunction were also observed in them. Conclusions Hepatic ERK2 revealed the suppression of hepatic ER stress and HST in vivo , which resulted in protection from vascular oxidative stress and endothelial dysfunction. HST with hepatic ER stress can be a prominent risk of vascular complications by metabolic remodeling and oxidative stress in obese-related diseases.


Sign in / Sign up

Export Citation Format

Share Document