scholarly journals Palmitate Causes Endoplasmic Reticulum Stress and Apoptosis in Human Mesenchymal Stem Cells: Prevention by AMPK Activator

Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5275-5284 ◽  
Author(s):  
Jun Lu ◽  
Qinghua Wang ◽  
Lianghu Huang ◽  
Huiyue Dong ◽  
Lingjing Lin ◽  
...  

Abstract Elevated circulating saturated fatty acids concentration is commonly associated with poorly controlled diabetes. The highly prevalent free fatty acid palmitate could induce apoptosis in various cell types, but little is known about its effects on human mesenchymal stem cells (MSCs). Here, we report that prolonged exposure to palmitate induces human bone marrow-derived MSC (hBM-MSC) and human umbilical cord-derived MSC apoptosis. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cell apoptosis. Palmitate activated XBP1 splicing, elF2α (eukaryotic translation initiation factor 2α) phosphorylation, and CHOP, ATF4, BiP, and GRP94 transcription in hBM-MSCs. ERK1/2 and p38 MAPK phosphorylation were also induced by palmitate in hBM-MSCs. A selective p38 inhibitor inhibited palmitate activation of the ER stress, whereas the ERK1/2 inhibitors had no effect. The AMP-activated protein kinase activator aminoimidazole carboxamide ribonucleotide blocked palmitate-induced ER stress and apoptosis. These findings suggest that palmitate induces ER stress and ERK1/2 and p38 activation in hBM-MSCs, and AMP-activated protein kinase activator prevents the deleterious effects of palmitate by inhibiting ER stress and apoptosis.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Se Ho Kim ◽  
Jae Yeon Kim ◽  
Soo Young Park ◽  
Won Tae Jeong ◽  
Jin Man Kim ◽  
...  

Abstract Background Cholesterol accumulation and calcium depletion induce hepatic injury via the endoplasmic reticulum (ER) stress response. ER stress regulates the calcium imbalance between the ER and mitochondria. We previously reported that phosphatase of regenerating liver-1 (PRL-1)-overexpressing placenta-derived mesenchymal stem cells (PD-MSCsPRL−1) promoted liver regeneration via mitochondrial dynamics in a cirrhotic rat model. However, the role of PRL-1 in ER stress-dependent calcium is not clear. Therefore, we demonstrated that PD-MSCsPRL−1 improved hepatic functions by regulating ER stress and calcium channels in a rat model of bile duct ligation (BDL). Methods Liver cirrhosis was induced in Sprague–Dawley (SD) rats using surgically induced BDL for 10 days. PD-MSCs and PD-MSCsPRL−1 (2 × 106 cells) were intravenously administered to animals, and their therapeutic effects were analyzed. WB-F344 cells exposed to thapsigargin (TG) were cocultured with PD-MSCs or PD-MSCsPRL−1. Results ER stress markers, e.g., eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), were increased in the nontransplantation group (NTx) compared to the control group. PD-MSCsPRL−1 significantly decreased ER stress markers compared to NTx and induced dynamic changes in calcium channel markers, e.g., sarco/endoplasmic reticulum Ca2+ -ATPase 2b (SERCA2b), inositol 1,4,5-trisphosphate receptor (IP3R), mitochondrial calcium uniporter (MCU), and voltage-dependent anion channel 1 (VDAC1) (*p < 0.05). Cocultivation of TG-treated WB-F344 cells with PD-MSCsPRL−1 decreased cytosolic calmodulin (CaM) expression and cytosolic and mitochondrial Ca2+ concentrations. However, the ER Ca2+ concentration was increased compared to PD-MSCs (*p  < 0.05). PRL-1 activated phosphatidylinositol-3-kinase (PI3K) signaling via epidermal growth factor receptor (EGFR), which resulted in calcium increase via CaM expression. Conclusions These findings suggest that PD-MSCsPRL−1 improved hepatic functions via calcium changes and attenuated ER stress in a BDL-injured rat model. Therefore, these results provide useful data for the development of next-generation MSC-based stem cell therapy for regenerative medicine in chronic liver disease.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Woong Park ◽  
Hyeongwan Kim ◽  
Yujin Jung ◽  
Kyung Pyo Kang ◽  
Won Kim

Abstract Background and Aims Nephrotoxicity is an important cisplatin-induced adverse reaction and restricts the use of cisplatin to treat malignant tumors. Endoplasmic reticulum (ER) stress is caused by the accumulation of misfolded proteins, and is induced by cisplatin in kidneys. SIRT2 nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase is a member of the sirtuin family, but its role in cisplatin-induced ER stress remains unclear. Method To investigate the effect of SIRT2 on cisplatin-induced ER stress using SIRT2 knockout mice and human proximal tubular epithelial cells (HK-2 cells). We treated cisplatin (20 µg/mL) or induced by intraperitoneal injection of cisplatin (20 mg/kg) and evaluated the changes of ER stress and its signal mechanism. Results Cisplatin administration was found to significantly increase the expressions of PRKR-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and the C/EBP homologous protein (CHOP) and caspase-12 in the kidneys of SIRT2-wild type mice. However, cisplatin-induced increases in the expressions of p-PERK, p-eIF2α, CHOP and, caspase-12 were diminished in kidneys of SIRT2 knockout mice. In vitro, cisplatin significantly increased the expressions of p-PERK, p-eIF2α, CHOP, and caspase-12 in HK-2 cells. When the effect of SIRT2 on cisplatin-induced ER stress was evaluated using SIRT2-siRNA (ON-TARGET plus human SIRT2 siRNA) or the SIRT2 inhibitors, AGK2 and AK1, knockdown or inhibition of SIRT2 significantly attenuated the cisplatin-induced protein expression of p-PERK, p-eIF2α, CHOP, and caspase-12. Immunoprecipitation studies showed SIRT2 bound physically to heat shock factor (HSF)1 and that HSF1 acetylation was significantly increased by cisplatin. In addition, knockdown of SIRT2 increased cisplatin-induced HSF1 acetylation and increased the expression of heat shock protein (HSP)70. Conclusion These observations suggest that suppression of SIRT2 ameliorates cisplatin-induced ER stress by increasing HSF1 acetylation and HSP expression.


2020 ◽  
Vol 319 (6) ◽  
pp. E961-E980
Author(s):  
Ruixi Luo ◽  
Linzhao Li ◽  
Xiaohong Liu ◽  
Yujia Yuan ◽  
Wuzheng Zhu ◽  
...  

High levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction (ED), which is involved in the pathogenesis of metabolic syndrome, diabetes, and atherosclerosis. Endoplasmic reticulum (ER) stress and endothelial-to-mesenchymal transition (EndMT) are demonstrated to be mechanistically related to endothelial dysfunction. Mesenchymal stem cells (MSCs) have exhibited an extraordinary cytoprotective effect on cellular lipotoxicity and vasculopathy. However, the underlying mechanisms have not been clearly defined. In the present study, we investigated whether MSCs could ameliorate palmitic acid (PA)-induced endothelial lipotoxicity by reducing ER stress and EndMT. We observed that MSC cocultures substantially alleviated PA-induced lipotoxicity in human umbilical vein endothelial cells (HUVECs). MSCs were able to restore the cell viability, increase tubule formation and migration ability, and decrease inflammation response and lipid deposition. Furthermore, PA caused endothelial-to-mesenchymal transition in HUVECs, which was abrogated by MSCs possibly through inhibiting ER stress. In addition, PA stimulated MSCs to secrete more stanniocalcin-1 (STC-1). Knocking down of STC-1 in MSCs attenuated their effects on PA-induced lipotoxicity in HUVECs. In vivo, MSC transplantation alleviated dyslipidemia and endothelial dysfunction in high-fat diet-fed Sprague–Dawley rats. MSC-treated rats showed reduced expressions of ER stress-related genes in aortas and suppressed expressions of EndMT-related proteins in rat aortic endothelial cells. Overall, our findings indicated that MSCs were able to attenuate endothelial lipotoxicity through inhibiting ER stress and EndMT, in which STC-1 secreted from MSCs may play a critical role.


2017 ◽  
Vol 8 (4) ◽  
pp. 1481-1493 ◽  
Author(s):  
Wenqi Yang ◽  
Xu Chen ◽  
Ming Chen ◽  
Yanping Li ◽  
Qing Li ◽  
...  

ER stress inhibition through AMPK activation may explain the protective effects of fish oil against HFD-induced insulin resistance.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Hongxiu Wen ◽  
Vinod Kumar ◽  
Xiqian Lan ◽  
Seyedeh Shadafarin Marashi Shoshtari ◽  
Judith M. Eng ◽  
...  

Two coding sequence variants (G1 and G2) of Apolipoprotein L1 (APOL1) gene have been implicated as a higher risk factor for chronic kidney diseases (CKD) in African Americans when compared with European Americans. Previous studies have suggested that the APOL1 G1 and G2 variant proteins are more toxic to kidney cells than the wild-type APOL1 G0, but the underlying mechanisms are poorly understood. To determine whether endoplasmic reticulum (ER) stress contributes to podocyte toxicity, we generated human podocytes (HPs) that stably overexpressed APOL1 G0, G1, or G2 (Vec/HPs, G0/HPs, G1/HPs, and G2/HPs). Propidium iodide staining showed that HP overexpressing the APOL1 G1 or G2 variant exhibited a higher rate of necrosis when compared with those overexpressing the wild-type G0 counterpart. Consistently, the expression levels of nephrin and podocin proteins were significantly decreased in the G1- or G2-overexpressing cells despite the maintenance of their mRNA expressions levels. In contrast, the expression of the 78-kDa glucose-regulated protein ((GRP78), also known as the binding Ig protein, BiP) and the phosphorylation of the eukaryotic translation initiation factor 1 (eIF1) were significantly elevated in the G1/HPs and G2/HPs, suggesting a possible occurrence of ER stress in these cells. Furthermore, ER stress inhibitors not only restored nephrin protein expression, but also provided protection against necrosis in G1/HPs and G2/HPs, suggesting that APOL1 risk variants cause podocyte injury partly through enhancing ER stress.


2021 ◽  
Author(s):  
Evgeniy Panzhinskiy ◽  
Søs Skovsø ◽  
Haoning Cen ◽  
Kwan Chu ◽  
Kate MacDonald ◽  
...  

Abstract The endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) helps decide cell survival in diabetes. The alternative eukaryotic initiation factor 2A (EIF2A) has been proposed to mediate EIF2S1-independent translation during cellular stress and viral infection, but its role in cells is unknown. EIF2A abundance is high in human and mouse islets relative to other tissues, and both thapsigargin and palmitate significantly increased EIF2A mRNA and EIF2A protein levels in MIN6 cells, mouse islets and human islets. Knockdowns of EIF2A, the related factor EIF2D, or both EIF2A and EIF2D, were not sufficient to cause apoptosis. On the other hand, transient or stable EIF2A over-expression protected MIN6 cells, primary mouse islets, and human islets from ER stress-induced, caspase-3-dependent apoptosis. Mechanistically, EIF2A overexpression decreased ERN1 (also known as IRE1) expression in thapsigargin-treated MIN6 cells or human islets. In vivo, cell specific EIF2A viral overexpression reduced ER stress, improved insulin secretion, and abrogated hyperglycemia in Ins2Akita/WT mice. EIF2A overexpression significantly increased expression of genes involved in protein translation and reduced expression of pro-apoptotic genes (e.g. ALDH1A3). Remarkably, the decrease in global protein synthesis during UPR was prevented by EIF2A, despite ER stress-induced EIF2S1 phosphorylation. The protective effects of EIF2A were additive to those of ISRIB, a drug that counteracts the effects of EIF2S1 phosphorylation. Cells overexpressing EIF2A showed higher expression of translation factor EIF2B5, which may contribute to the lack of translational inhibition in these cells. We conclude that EIF2A is a novel target for cell protection and the circumvention of EIF2S1-mediated translational repression.


2005 ◽  
Vol 25 (21) ◽  
pp. 9554-9575 ◽  
Author(s):  
Kazuo Terai ◽  
Yoshimune Hiramoto ◽  
Mitsuru Masaki ◽  
Shoko Sugiyama ◽  
Tadashi Kuroda ◽  
...  

ABSTRACT Oxygen deprivation leads to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), causing ER stress. Under conditions of ER stress, inhibition of protein synthesis and up-regulation of ER chaperone expression reduce the misfolded proteins in the ER. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in energy homeostasis during hypoxia. It has been shown that AMPK activation is associated with inhibition of protein synthesis via phosphorylation of elongation factor 2 (eEF2) in cardiomyocytes. We therefore examined whether AMPK attenuates hypoxia-induced ER stress in neonatal rat cardiomyocytes. We found that hypoxia induced ER stress, as assessed by the expression of CHOP and BiP and cleavage of caspase 12. Knockdown of CHOP or caspase 12 through small interfering RNA (siRNA) resulted in decreased expression of cleaved poly(ADP-ribose) polymerase following exposure to hypoxia. We also found that hypoxia-induced CHOP expression and cleavage of caspase 12 were significantly inhibited by pretreatment with 5-aminoimidazole-4-carboxyamide-1-β-d-ribofuranoside (AICAR), a pharmacological activator of AMPK. In parallel, adenovirus expressing dominant-negative AMPK significantly attenuated the cardioprotective effects of AICAR. Knockdown of eEF2 phosphorylation using eEF2 kinase siRNA abolished these cardioprotective effects of AICAR. Taken together, these findings demonstrate that activation of AMPK contributes to protection of the heart against hypoxic injury through attenuation of ER stress and that attenuation of protein synthesis via eEF2 inactivation may be the mechanism of cardioprotection by AMPK.


2003 ◽  
Vol 77 (6) ◽  
pp. 3578-3585 ◽  
Author(s):  
Nicole Pavio ◽  
Patrick R. Romano ◽  
Thomas M. Graczyk ◽  
Stephen M. Feinstone ◽  
Deborah R. Taylor

ABSTRACT The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2α phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2. At low expression levels, E2 induced ER stress, but at high expression levels, and in vitro, E2 inhibited PERK kinase activity. Mammalian cells that stably express E2 were refractory to the translation-inhibitory effects of ER stress inducers, and E2 relieved general translation inhibition induced by PERK. The PePHD of E2 was required for the rescue of translation that was inhibited by activated PERK, similar to our previous findings with PKR. Here we report the inhibition of a second eIF2α kinase by E2, and these results are consistent with a pseudosubstrate mechanism of inhibition of eIF2α kinases. These findings may also explain how the virus promotes persistent infection by overcoming the cellular ER stress response.


Sign in / Sign up

Export Citation Format

Share Document