AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion

Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2269-2277 ◽  
Author(s):  
Bo Peng ◽  
Hua Zhu ◽  
Liyang Ma ◽  
Yan-ling Wang ◽  
Christian Klausen ◽  
...  

Abstract GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion.

Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5255-5266 ◽  
Author(s):  
Angelo Cignarelli ◽  
Mariangela Melchiorre ◽  
Alessandro Peschechera ◽  
Antonella Conserva ◽  
Lucia Adelaide Renna ◽  
...  

The small ubiquitin-like modifier-conjugating enzyme UBC9, involved in protein modification through covalent attachment of small ubiquitin-like modifier and other less defined mechanisms, has emerged as a key regulator of cell proliferation and differentiation. To explore the role of UBC9 in adipocyte differentiation, the UBC9 protein levels were examined in differentiating 3T3-L1 cells. UBC9 mRNA and protein levels were increased 2.5-fold at d 2 and then gradually declined to basal levels at d 8 of differentiation. In addition, UBC9 was expressed predominantly in the nucleus of preadipocytes but shifted to cytoplasmic compartments after d 4, after induction of differentiation. UBC9 knockdown was then achieved in differentiating 3T3-L1 preadipocytes using a specific small interfering RNA. Oil-Red-O staining demonstrated accumulation of large triglyceride droplets in approximately 90% of control cells, whereas lipid droplets were smaller and evident in only 30% of cells treated with the UBC9-specific small interfering RNA. CCAAT/enhancer-binding protein (C/EBP)-δ, peroxisome proliferator-activated receptor-γ, and C/EBPα mRNA levels were increased severalfold 2–6 d after induction of differentiation in control cells, whereas the expression of these transcription factors was significantly lower in the presence of UBC9 gene silencing. Adenovirus-mediated overexpression of a catalytically inactive mutant UBC9 protein in 3T3-L1 cells resulted in no changes in expression of adipogenic transcription factors and conversion to mature adipocytes as compared with control. In conclusion, UBC9 appears to play an important role in adipogenesis. The temporal profile of UBC9 induction and its ability to affect C/EBPδ mRNA induction support a role for this protein during early adipogenesis.


Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 925-936 ◽  
Author(s):  
York Hunt Ng ◽  
Hua Zhu ◽  
Peter C. K. Leung

The invasion of extravillous cytotrophoblasts (EVT) into the underlying maternal tissues and vasculature is a key step in human placentation. The molecular mechanisms involved in the development of the invasive phenotype of EVT include many that were first discovered for their role in cancer cell metastasis. Previous studies have demonstrated that N-cadherin and its regulatory transcription factor Twist play important roles in the onset and progression of cancers, but their roles in human trophoblastic cell invasion is not clear. The goal of the study was to examine the role of Twist and N-cadherin in human trophoblastic cell invasion. Twist and N-cadherin mRNA and protein levels were determined by RT-PCR and Western blotting in human placental tissues, highly invasive EVT, and poorly invasive JEG-3 and BeWo cells. Whether IL-1β and TGF-β1 regulate Twist mRNA and protein levels in the EVT was also examined. A small interfering RNA strategy was employed to determine the role of Twist and N-cadherin in HTR-8/SVneo cell invasion. Matrigel assays were used to assess cell invasion. Twist and N-cadherin were highly expressed in EVT but were poorly expressed in JEG-3 and BeWo cells. IL-1β and TGF-β1 differentially regulated Twist expression in EVT in a time- and concentration-dependent manner. Small interfering RNA specific for Twist decreased N-cadherin and reduced invasion of HTR-8/SVneo cells. Similarly, a reduction in N-cadherin decreased the invasive capacity of HTR-8/SVneo cells. Twist is an upstream regulator of N-cadherin-mediated invasion of human trophoblastic cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Shirin Khanjani ◽  
Vasso Terzidou ◽  
Mark R. Johnson ◽  
Phillip R. Bennett

The uterine expression of the chemokine IL8 increases dramatically with the onset of labour both at term and preterm. The IL8 promoter contains binding sites for the transcription factors nuclear factor-kappa B (NFκB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein (CEBP). In this study we investigated the roles of these transcription factors in IL1B regulation of the IL8 gene in human myometrium. Using chromatin immune precipitation (ChIP) assay, we showed that each of NFκB, CEBP, and AP-1 binds to the IL8 promoter upon IL1B stimulation. To examine the relative importance of each site in IL8 gene expression, site-directed mutagenesis of each of these sites was performed. We found that the NFκB site was essential for basal and IL1B-stimulated gene expression. Mutation of the AP-1 site reduced both basal and IL1B-stimulated expression but to a lesser extent. Mutation of the CEBP site had no effect upon basal expression but eliminated the IL1B response. Small interfering RNA (siRNA) silencing of NFκB abolished the IL8 response to IL1B significantly; siRNA against AP-1 reduced it to a lesser extent whilst knockdown of CEBP enhanced the response. Our data confirms a central and essential role for NFκB in regulation of IL8 in human myometrium.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1908-1920 ◽  
Author(s):  
Gudrun Meinhardt ◽  
Sandra Haider ◽  
Peter Haslinger ◽  
Katharina Proestling ◽  
Christian Fiala ◽  
...  

Formation of migratory extravillous trophoblasts (EVTs) is critical for human placentation and hence embryonic development. However, key regulatory growth factors, hormones, and nuclear proteins controlling the particular differentiation process remain poorly understood. Here, the role of the Wingless (Wnt)-dependent transcription factor T-cell factor-4 (TCF-4) in proliferation and motility was investigated using different trophoblast cell models. Immunofluorescence of first-trimester placental tissues revealed induction of TCF-4 and nuclear recruitment of its coactivator β-catenin in nonproliferating EVTs, whereas membrane-associated β-catenin decreased upon differentiation. In addition, EVTs expressed the TCF-4/β-catenin coactivator Pygopus 2 as well as repressors of the Groucho/transducin-like enhancer of split family. Western blotting revealed Pygopus 2 expression and up-regulation of integrin α1 and nuclear TCF-4 in purified first-trimester cytotrophoblasts (CTBs) differentiating on fibronectin. Concomitantly, elevated TCF-4 mRNA, quantitated by real-time PCR, and increased TCF-dependent luciferase reporter activity were noticed in EVTs of villous explant cultures and differentiated primary CTBs. Gene silencing using specific small interfering RNA decreased TCF-4 transcript and protein levels, TCF-dependent reporter activity as well as basal and Wnt3a-stimulated migration of trophoblastic SGHPL-5 cells and primary CTBs through fibronectin-coated transwells. In contrast, proliferation of SGHPL-5 cells and primary cells, measured by cumulative cell numbers and 5-bromo-2′-deoxy-uridine labeling, respectively, was not affected. Moreover, siRNA-mediated down-regulation of TCF-4 in primary CTBs diminished markers of the differentiated EVT, such as integrin α1 and α5, Snail1, and Notch2. In summary, the data suggest that Wnt/TCF-4-dependent signaling could play a role in EVT differentiation promoting motility and expression of promigratory genes.


2015 ◽  
Vol 35 (4) ◽  
pp. 1654-1662 ◽  
Author(s):  
Qi-tao Huang ◽  
Jian-hong Chen ◽  
Li-lin Hang ◽  
Shi-san Liu ◽  
Mei Zhong

Backgrounds/Aims: Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT). Methods: An EVT cell line (HRT-8/SVneo) was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Results: Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA) directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Conclusions: Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future.


2015 ◽  
Vol 100 (11) ◽  
pp. E1415-E1427 ◽  
Author(s):  
Yan Li ◽  
Christian Klausen ◽  
Hua Zhu ◽  
Peter C. K. Leung

Context: Activin A increases matrix metalloproteinase (MMP) 2 expression and cell invasion in human trophoblasts, but whether the expression of MMP2 is essential for the proinvasive effect of activin A has yet to be determined. Moreover, the identity of the activin receptor-like kinase (ALK; TGF-β type I receptors) and downstream transcription factors (eg, SNAIL and SLUG) mediating the effects of activin on MMP2 expression and trophoblast cell invasion remains unknown. Objective: To elucidate the role of MMP2 in activin A-induced human trophoblast cell invasion as well as the involvement of ALK4 and SNAIL. Design: HTR8/SVneo immortalized human extravillous cytotrophoblast (EVT) cells and primary cultures of human first-trimester EVT cells were used as study models. Small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions. Main Outcome Measures: Levels of mRNA and protein were examined by reverse transcription-quantitative real-time PCR and Western blot, respectively. Cell invasiveness was measured by Matrigel-coated transwell assays. Results: Treatment of HTR8/SVneo cells with activin A increased the production of SNAIL, SLUG, and MMP2 without altering that of MMP9, TIMP1, TIMP2, TWIST, RUNX2, ZEB1, or ZEB2. Similarly, activin A up-regulated the mRNA and protein levels of SNAIL and MMP2 in primary EVT cells. Knockdown of SNAIL attenuated activin A-induced MMP2 up-regulation in HTR8/SVneo and primary EVT cells. In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pretreatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3, or common SMAD4. Likewise, knockdown of ALK4 or SMAD4 abolished the stimulatory effects of activin A on SNAIL and MMP2 expression in primary EVT cells. Importantly, activin A-induced HTR8/SVneo and primary EVT cell invasion were attenuated by siRNA-mediated depletion of ALK4 or MMP2. Conclusion: Activin A induces human trophoblast cell invasion by inducing SNAIL-mediated MMP2 expression through ALK4 in a SMAD2/3-SMAD4-dependent manner.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 362
Author(s):  
Min Hee Yang ◽  
In Jin Ha ◽  
Jae-Young Um ◽  
Kwang Seok Ahn

Albendazole (ABZ) has been reported to display anti-tumoral actions against various maliganncies, but possible impact of ABZ on gastric cancer has not been deciphered. As aberrant phosphorylation of STAT3 and STAT5 proteins can regulate the growth and progression of gastric cancer, we postulated that ABZ may interrupt the activation of these oncogenic transcription factors. We found that ABZ exposure abrogated STAT3/5 activation, inhibited phosphorylation of Janus-activated kinases 1/2 and Src and enhanced the levels of SHP-1 protein. Silencing of SHP-1 gene by small interfering RNA (siRNA) reversed the ABZ-promoted attenuation of STAT3 as well as STAT5 activation and cellular apoptosis. In addition, these effects were noted to be driven by an augmented levels of reactive oxygen species caused by drug-induced GSH/GSSG imbalance. Thus, the data indicates that ABZ can modulate the activation of STAT3 and STAT5 by pleiotropic mechanisms in gastric cancer cells.


Author(s):  
Nawrah Khader ◽  
Virlana M Shchuka ◽  
Oksana Shynlova ◽  
Jennifer A Mitchell

Abstract The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for fetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1 (AP-1), progesterone receptors (PRs), estrogen receptors (ERs), and nuclear factor kappa B (NF-κB), as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour- associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.


2006 ◽  
Vol 26 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Chonghui Cheng ◽  
Phillip A. Sharp

ABSTRACT The multiple isoforms of the transmembrane glycoprotein CD44 are produced by alternative RNA splicing. Expression of CD44 isoforms containing variable 5 exon (v5) correlates with enhanced malignancy and invasiveness of some tumors. Here we demonstrate that SRm160, a splicing coactivator, regulates CD44 alternative splicing in a Ras-dependent manner. Overexpression of SRm160 stimulates inclusion of CD44 v5 when Ras is activated. Conversely, small interfering RNA (siRNA)-mediated silencing of SRm160 significantly reduces v5 inclusion. Immunoprecipitation shows association of SRm160 with Sam68, a protein that also stimulates v5 inclusion in a Ras-dependent manner, suggesting that these two proteins interact to regulate CD44 splicing. Importantly, siRNA-mediated depletion of CD44 v5 decreases tumor cell invasion. Reduction of SRm160 by siRNA transfection downregulates the endogenous levels of CD44 isoforms, including v5, and correlates with a decrease in tumor cell invasiveness.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110097
Author(s):  
Kui Cui ◽  
Fan Yang ◽  
Turan Tufan ◽  
Muhammad U. Raza ◽  
Yanqiang Zhan ◽  
...  

Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.


Sign in / Sign up

Export Citation Format

Share Document