scholarly journals Role of UBC9 in the Regulation of the Adipogenic Program in 3T3-L1 Adipocytes

Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5255-5266 ◽  
Author(s):  
Angelo Cignarelli ◽  
Mariangela Melchiorre ◽  
Alessandro Peschechera ◽  
Antonella Conserva ◽  
Lucia Adelaide Renna ◽  
...  

The small ubiquitin-like modifier-conjugating enzyme UBC9, involved in protein modification through covalent attachment of small ubiquitin-like modifier and other less defined mechanisms, has emerged as a key regulator of cell proliferation and differentiation. To explore the role of UBC9 in adipocyte differentiation, the UBC9 protein levels were examined in differentiating 3T3-L1 cells. UBC9 mRNA and protein levels were increased 2.5-fold at d 2 and then gradually declined to basal levels at d 8 of differentiation. In addition, UBC9 was expressed predominantly in the nucleus of preadipocytes but shifted to cytoplasmic compartments after d 4, after induction of differentiation. UBC9 knockdown was then achieved in differentiating 3T3-L1 preadipocytes using a specific small interfering RNA. Oil-Red-O staining demonstrated accumulation of large triglyceride droplets in approximately 90% of control cells, whereas lipid droplets were smaller and evident in only 30% of cells treated with the UBC9-specific small interfering RNA. CCAAT/enhancer-binding protein (C/EBP)-δ, peroxisome proliferator-activated receptor-γ, and C/EBPα mRNA levels were increased severalfold 2–6 d after induction of differentiation in control cells, whereas the expression of these transcription factors was significantly lower in the presence of UBC9 gene silencing. Adenovirus-mediated overexpression of a catalytically inactive mutant UBC9 protein in 3T3-L1 cells resulted in no changes in expression of adipogenic transcription factors and conversion to mature adipocytes as compared with control. In conclusion, UBC9 appears to play an important role in adipogenesis. The temporal profile of UBC9 induction and its ability to affect C/EBPδ mRNA induction support a role for this protein during early adipogenesis.

Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 925-936 ◽  
Author(s):  
York Hunt Ng ◽  
Hua Zhu ◽  
Peter C. K. Leung

The invasion of extravillous cytotrophoblasts (EVT) into the underlying maternal tissues and vasculature is a key step in human placentation. The molecular mechanisms involved in the development of the invasive phenotype of EVT include many that were first discovered for their role in cancer cell metastasis. Previous studies have demonstrated that N-cadherin and its regulatory transcription factor Twist play important roles in the onset and progression of cancers, but their roles in human trophoblastic cell invasion is not clear. The goal of the study was to examine the role of Twist and N-cadherin in human trophoblastic cell invasion. Twist and N-cadherin mRNA and protein levels were determined by RT-PCR and Western blotting in human placental tissues, highly invasive EVT, and poorly invasive JEG-3 and BeWo cells. Whether IL-1β and TGF-β1 regulate Twist mRNA and protein levels in the EVT was also examined. A small interfering RNA strategy was employed to determine the role of Twist and N-cadherin in HTR-8/SVneo cell invasion. Matrigel assays were used to assess cell invasion. Twist and N-cadherin were highly expressed in EVT but were poorly expressed in JEG-3 and BeWo cells. IL-1β and TGF-β1 differentially regulated Twist expression in EVT in a time- and concentration-dependent manner. Small interfering RNA specific for Twist decreased N-cadherin and reduced invasion of HTR-8/SVneo cells. Similarly, a reduction in N-cadherin decreased the invasive capacity of HTR-8/SVneo cells. Twist is an upstream regulator of N-cadherin-mediated invasion of human trophoblastic cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 362
Author(s):  
Min Hee Yang ◽  
In Jin Ha ◽  
Jae-Young Um ◽  
Kwang Seok Ahn

Albendazole (ABZ) has been reported to display anti-tumoral actions against various maliganncies, but possible impact of ABZ on gastric cancer has not been deciphered. As aberrant phosphorylation of STAT3 and STAT5 proteins can regulate the growth and progression of gastric cancer, we postulated that ABZ may interrupt the activation of these oncogenic transcription factors. We found that ABZ exposure abrogated STAT3/5 activation, inhibited phosphorylation of Janus-activated kinases 1/2 and Src and enhanced the levels of SHP-1 protein. Silencing of SHP-1 gene by small interfering RNA (siRNA) reversed the ABZ-promoted attenuation of STAT3 as well as STAT5 activation and cellular apoptosis. In addition, these effects were noted to be driven by an augmented levels of reactive oxygen species caused by drug-induced GSH/GSSG imbalance. Thus, the data indicates that ABZ can modulate the activation of STAT3 and STAT5 by pleiotropic mechanisms in gastric cancer cells.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110097
Author(s):  
Kui Cui ◽  
Fan Yang ◽  
Turan Tufan ◽  
Muhammad U. Raza ◽  
Yanqiang Zhan ◽  
...  

Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.


2013 ◽  
Vol 451 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Claudia C. S. Chini ◽  
Carlos Escande ◽  
Veronica Nin ◽  
Eduardo N. Chini

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


2005 ◽  
Vol 289 (5) ◽  
pp. G798-G805 ◽  
Author(s):  
Gernot Zollner ◽  
Martin Wagner ◽  
Peter Fickert ◽  
Andreas Geier ◽  
Andrea Fuchsbichler ◽  
...  

Expression of the main hepatic bile acid uptake system, the Na+-taurocholate cotransporter (Ntcp), is downregulated during cholestasis. Bile acid-induced, farnesoid X receptor (FXR)-mediated induction of the nuclear repressor short heterodimer partner (SHP) has been proposed as a key mechanism reducing Ntcp expression. However, the role of FXR and SHP or other nuclear receptors and hepatocyte-enriched transcription factors in mediating Ntcp repression in obstructive cholestasis is unclear. FXR knockout (FXR−/−) and wild-type (FXR+/+) mice were subjected to common bile duct ligation (CBDL). Cholic acid (CA)-fed and LPS-treated FXR−/− and FXR+/+ mice were studied for comparison. mRNA levels of Ntcp and SHP and nuclear protein levels of hepatocyte nuclear factor (HNF)-1α, HNF-3β, HNF-4α, retinoid X receptor (RXR)-α, and retinoic acid receptor (RAR)-α and their DNA binding were assessed. Hepatic cytokine mRNA levels were also measured. CBDL and CA led to Ntcp repression in FXR+/+, but not FXR−/−, mice, whereas LPS reduced Ntcp expression in both genotypes. CBDL and LPS but not CA induced cytokine expression and reduced levels of HNF-1α, HNF-3β, HNF-4α, RXRα, and RARα to similar extents in FXR+/+ and FXR−/−. DNA binding of these transactivators was unaffected by CA in FXR+/+ mice but was markedly reduced in FXR−/− mice. In conclusion, Ntcp repression by CBDL and CA is mediated by accumulating bile acids via FXR and does not depend on cytokines, whereas Ntcp repression by LPS is independent of FXR. Reduced levels of HNF-1α, RXRα, and RARα in CBDL FXR−/− mice and reduced DNA binding in CA-fed FXR−/− mice, despite unchanged Ntcp levels, indicate that these factors may have a minor role in regulation of mouse Ntcp during cholestasis.


2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


2007 ◽  
Vol 12 (4) ◽  
pp. 546-559 ◽  
Author(s):  
Jason Borawski ◽  
Alicia Lindeman ◽  
Frank Buxton ◽  
Mark Labow ◽  
L. Alex Gaither

High-throughput screening of RNAi libraries has become an essential part of functional analysis in academic and industrial settings. The transition of a cell-based RNAi assay into a 384-well format requires several optimization steps to ensure the phenotype being screened is appropriately measured and that the signal-to-background ratio is above a certain quantifiable threshold. Methods currently used to assess small interfering RNA (siRNA) efficacy after transfection, including quantitative PCR or branch DNA analysis, face several technical limitations preventing the accurate measurement of mRNA levels in a 384-well format. To overcome these difficulties, the authors developed an approach using a viral-based transfection system that measures siRNA efficacy in a standardized 384-well assay. This method allows measurement of siRNA activity in a phenotypically neutral manner by quantifying the knockdown of an exogenous luciferase gene delivered by a lentiviral vector. In this assay, the efficacy of a luciferase siRNA is compared to a negative control siRNA across many distinct assay parameters including cell type, cell number, lipid type, lipid volume, time of the assay, and concentration of siRNA. Once the siRNA transfection is optimized as a 384-well luciferase knockdown, the biologically relevant phenotypic analysis can proceed using the best siRNA transfection conditions. This approach provides a key technology for 384-well assay development when direct measurement of mRNA knockdown is not possible. It also allows for direct comparison of siRNA activity across cell lines from almost any mammalian species. Defining optimal conditions for siRNA delivery into mammalian cells will greatly increase the speed and quality of large-scale siRNA screening campaigns. ( Journal of Biomolecular Screening 2007:546-559)


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Akira Nishiyama ◽  
Juan Wang ◽  
Shinichi Yachida ◽  
Genevieve Nguyen ◽  
Takuo Hirose ◽  
...  

(Pro)renin receptor ((P)RR) is a component of the Wnt receptor complex (Science, 2010). We have recently demonstrated that (P)RR plays an important role in the tumorigenesis of pancreatic ductal adenocarcinoma via the activation of Wnt/β-catenin signaling pathway (Shibayama et al. Sci Rep. 2015). Since the patients with colon cancer often show aberrantly activated Wnt/β-catenin-dependent signaling pathway by the mutations of its components, we investigated the possible role of (P)RR and Wnt/β-catenin signaling pathway in carcinogenesis of colon cancer. Real-time PCR was used for measuring mRNA levels of (P)RR. Protein levels of (P)RR was determined by Western blotting and immunohistochemistry. Activated β-catenin levels were determined by Western blotting. Cell proliferative ability was evaluated by counting the cell number in cultured colon cancer cell lines, HCT116 and DLD-1 cells. As compared to normal colon tissues (n=6), mRNA and protein levels of (P)RR were increased by 2.6- and 2.2-fold, respectively, in colon cancer tissues (n=9), which were associated with increased activated β-catenin levels (by 2.8-fold, P<0.05). However, plasma soluble (P)RR levels were not changed in patients with colon cancer (n=9). (P)RR and activated β-catenin levels were also increased in HCT116 (by 2.2- and 2.7-fold, n=5, respectively) and DLD-1 cells (by 1.9- and 2.8-fold, n=5, respectively). In these cells, inhibiting (P)RR with an siRNA attenuated the activity of β-catenin and reduced the proliferative abilities (n=5, P<0.05, respectively). These data suggest that (P)RR contributes to the tumorigenesis of colon cancer through the activation of Wnt/β-catenin signaling pathway.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2637
Author(s):  
Joon Min Jung ◽  
Tai Kyung Noh ◽  
Soo Youn Jo ◽  
Su Yeon Kim ◽  
Youngsup Song ◽  
...  

Epidermal keratinocytes are considered as the most important neighboring cells that modify melanogenesis. Our previous study used microarray to show that guanine deaminase (GDA) gene expression is highly increased in melasma lesions. Hence, we investigated the role of GDA in skin pigmentation. We examined GDA expression in post-inflammatory hyperpigmentation (PIH) lesions, diagnosed as Riehl’s melanosis. We further investigated the possible role of keratinocyte-derived GDA in melanogenesis by quantitative PCR, immunofluorescence staining, small interfering RNA-based GDA knockdown, and adenovirus-mediated GDA overexpression. We found higher GDA positivity in the hyperpigmentary lesional epidermis than in the perilesional epidermis. Both UVB irradiation and stem cell factor (SCF) plus endothelin-1 (ET-1) were used, which are well-known melanogenic stimuli upregulating GDA expression in both keratinocyte culture alone and keratinocyte and melanocyte coculture. GDA knockdown downregulated melanin content, while GDA overexpression promoted melanogenesis in the coculture. When melanocytes were treated with UVB-exposed keratinocyte-conditioned media, the melanin content was increased. Also, GDA knockdown lowered SCF and ET-1 expression levels in keratinocytes. GDA in epidermal keratinocytes may promote melanogenesis by upregulating SCF and ET-1, suggesting its role in skin hyperpigmentary disorders.


Sign in / Sign up

Export Citation Format

Share Document