scholarly journals Inhibition of Gonadotropin-Induced Testosterone Secretion by the Intracerebroventricular Injection of Interleukin-1β in the Male Rat*

Endocrinology ◽  
1997 ◽  
Vol 138 (3) ◽  
pp. 1008-1013 ◽  
Author(s):  
Andrew V. Turnbull ◽  
Catherine Rivier

Abstract The intracerebroventricular (icv) injection of the proinflammatory cytokine interleukin (IL)-1β is known to significantly decrease plasma LH levels in the male rat, thereby lowering testosterone (T) secretion. We show here that central administration of this cytokine (20–80 ng) also inhibits T secretion in response to human CG (hCG), an effect that is apparent already when IL-1β is injected 15 min before hCG. This phenomenon is independent of LH secretion because lowering LH levels with the potent GnRH antagonist Azaline B neither mimics nor affects the suppressive influence of icv IL-1β on the hCG-induced T secretory response. Elevations in plasma corticosterone levels do not seem to play a role either, because icv IL-1β is able to blunt hCG-induced T secretion in animals whose corticosterone has been removed by adrenalectomy or reduced by the administration of antibodies to CRF. Furthermore, the observation that icv IL-1β inhibits the T response to hCG before elevations in plasma IL-6 concentrations are detectable, and that central treatment with the cytokine is more effective than iv treatment, indicates that circulating levels of neither IL-1β nor IL-6 are important mediators of this effect. Collectively, these results lead us to propose that IL-1β of central origin influences neural pathways linking the brain and the testes, resulting in decreased testicular responses to hCG.

1995 ◽  
Vol 133 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Robert F McGivern ◽  
Ralph HM Hermans ◽  
Robert J Handa ◽  
Lawrence D Longo

McGivern RF, Hermans RHM, Handa RJ, Longo LD. Plasma testosterone surge and luteinizing hormone beta (LH-β) following parturition: lack of association in the male rat. Eur J Endocrinol 1995; 133:366–74. ISSN 0804–4643 Studies examining the role of luteinizing hormone (LH) in the initiation of the postnatal surge of testosterone in the male rat have produced ambiguous results. We examined the pattern of postnatal LH secretion in the newborn male rat, coincident with plasma testosterone levels, using a specific monoclonal antibody for LH-β. In some males, we attempted to block LH secretion and the postnatal testosterone surge by injecting males with a gonadotropin-releasing hormone (GnRH) antagonist, an LH antibody or progesterone immediately after delivery by cesarean section on day 22. Following injection, animals were immediately sacrificed (time 0) or housed in a humidified incubator maintained at 30°C until sacrifice at 60, 120, 240, 360 or 480 min after delivery. Plasma from individual animals was measured subsequently for LH-β and testosterone by radioimmunoassay. Results revealed a postnatal surge of testosterone which peaked at 2 h after delivery in males from all treatment groups. This testosterone surge was not accompanied by a postnatal rise in plasma LH-β in any group. Administration of the GnRH antagonist or the ethanol vehicle produced a transient drop of approximately 25% in LH-β levels at 60 min but did not decrease the postnatal testosterone surge in the same animals. Additional studies in untreated males and females born by cesarean section or natural birth also failed to reveal a postnatal rise in plasma LH-β during the first 3 h after birth. Plasma levels in both sexes were significantly lower in animals delivered by cesarean section compared to natural birth. Overall, these results indicate that the postnatal surge of testosterone occurs without a corresponding surge of detectable LH-β in the male rat. Robert F McGivern, 6363 Alvarado Ct, Suite 200H. San Diego, CA 92120, USA


1992 ◽  
Vol 133 (3) ◽  
pp. 439-445 ◽  
Author(s):  
G. F. Weinbauer ◽  
P. Hankel ◽  
E. Nieschlag

ABSTRACT We reported previously that after a single injection of a gonadotrophin-releasing hormone (GnRH) antagonist to male monkeys, exogenous GnRH stimulated LH secretion in a time- and dose-dependent manner, indicating that GnRH antagonist-induced blockade of LH secretion resulted from pituitary GnRH receptor occupancy. The present study was performed to investigate whether GnRH can also restore a blockade of LH and testosterone secretion during chronic GnRH antagonist administration. Four adult male cynomolgus monkeys (Macacafascicularis) received daily s.c. injections of the GnRH antagonist [N-Ac-d-pCl-Phe1,2,d-TRP3,d-Arg6,d-Ala10]-GnRH (ORG 30276) at a dose of 1400–1600 μg/kg for 8 weeks. Before the GnRH antagonist was given and during weeks 3 and 8 of treatment, pituitary stimulation tests were performed with 0·5, 5, 50 and 500 μg synthetic GnRH, administered in increasing order at intervals of 24 h. At 8 weeks, a dose of 1000 μg GnRH was also given. All doses of GnRH significantly (P < 0·05) stimulated serum concentrations of bioactive LH (3- to 8-fold) and testosterone (2·6- to 3·8-fold) before the initiation of GnRH antagonist treatment. After 3 weeks of GnRH antagonist treatment, only 50 and 500 μg GnRH doses were able to increase LH and testosterone secretion. Release of LH was significantly (P < 0·05) more elevated with 500 μg compared with 50 μg GnRH. After 8 weeks, only the highest dose of 1000 μg elicited a significant (P < 0·05) rise in LH secretion. Basal hormone levels just before the bolus injection of GnRH were similar (P > 0·10–0·80). This finding eliminated the possibility that the increasing doses of GnRH had primed the pituitary thereby resulting in higher stimulatory effects of the larger doses of GnRH. In conclusion, the present data indicate that, even after prolonged exposure to a GnRH antagonist, the pituitary retains some degree of responsiveness to GnRH. This observation supports the view that the inhibitory effects of chronic GnRH antagonist treatment are also mediated, at least in part, by occupancy of the pituitary GnRH receptor rather than by receptor down-regulation. Journal of Endocrinology (1992) 133, 439–445


1999 ◽  
Vol 276 (4) ◽  
pp. E603-E610 ◽  
Author(s):  
Dominique D. Pierroz ◽  
Audrey C. Aebi ◽  
Ilpo T. Huhtaniemi ◽  
Michel L. Aubert

The pulsatile luteinizing hormone (LH) and testosterone secretions were studied during serial blood collections performed at 7-min time intervals in the male rat. In fed rats, a discontinuous pattern of LH secretion was observed. Periods without secretion alternated with active secretory episodes consisting in trains of three to four LH peaks that triggered testosterone secretion usually 1–2 h later. The magnitude of the testosterone response was not correlated with the amplitude of the LH peaks. Isolated, single peaks of LH did not evoke clear testosterone responses. Forty-eight hours after initiation of fasting, testosterone secretion was markedly decreased, but integrated LH secretion was only partly reduced. Chronic infusion of neuropeptide Y (NPY; 18 μg/day, icv) reduced testosterone secretion to very low levels and abolished pulsatile LH secretion or testosterone response to isolated LH peaks. In conclusion, the stimulation of testosterone secretion by LH necessitates several LH peaks organized in a proper sequence, and the testosterone response is not immediate. Low testosterone secretion in fasting rats appears to result from disappearance of coordinated, multiple LH peaks of sufficient size. Inhibition of the gonadotropic axis achieved by central NPY administration is due to either absence of LH peak “clusters” or occurrence of nonfunctional single LH peaks.


1991 ◽  
Vol 124 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Paul Franchimont ◽  
Sabine M. Almer ◽  
Chantal-J. Charlet-Renard ◽  
Christine L. Daubresse ◽  
Peter P. Kicovic

Abstract. The effect of a new GnRH antagonist (ORG 30850 ANT) on FSH, LH, and PRL secretion was studied using male rat pituitary cells in monolayer cell culture. In the absence of GnRH, ORG 30850 ANT did not alter spontaneous FSH and LH secretion into culture medium or the cell content of these hormones. In the presence of GnRH (10−8 mol/l), ORG 30850 ANT significantly and dose-dependently inhibited FSH and LH secretion into culture medium while increasing their cell content. Conversely, in the presence of a single dose of ORG 30850 ANT, FSH and LH secretion rose significantly when subjected to increasing amounts of GnRH, whereas the hormonal cell content diminished. Furthermore, inhibition of GnRH-induced FSH and LH release by ORG 30850 ANT was not changed by pre-incubation with the GnRH antagonist regardless of the pre-incubation time. The inhibitory effect of the GnRH antagonist was observed early, with its peak occurring within 6 h of culture. These short-term studies indicate that ORG 30850 ANT specifically inhibits GnRH-induced gonadotropin release into culture medium, exerts no effect on the rate of gonadotropin production in the presence or absence of GnRH, competitively and reversibly inhibits the binding of natural GnRH to its receptors, and does not lead to any modifications in PRL secretion.


1999 ◽  
Vol 163 (2) ◽  
pp. 235-241 ◽  
Author(s):  
KJ Suter

The hypothalamic component of the reproductive axis in vertebrates is comprised of a pulse generator that stimulates the release of GnRH. Several lines of evidence are in agreement that the activity of this pulse generator is intermittent and results in the pulsatile pattern of GnRH and LH release. During a recent investigation of the re-initiation of LH secretion in the agonadal, prepubertal male monkey, we observed a daytime profile of LH secretion, which suggests an apulsatile mode of GnRH release. The first purpose of this study was to describe this observation of apulsatile LH release during the peripubertal transition. Furthermore, we have explored the dependence of this form of LH secretion on GnRH release. Five male rhesus monkeys (Macaca mulatta) were castrated prepubertally and were treated with an intermittent infusion of GnRH to prematurely sensitize the juvenile pituitary to endogenous GnRH release. Alternate daytime (1100-1800 h) and nighttime (1900-0200 h) assessments of LH release were performed at 10-day intervals throughout the peripubertal transition with samples taken every 12 min. In a second experiment, four agonadal males which demonstrated an apulsatile profile of LH release were maintained on an infusion of physiological saline and were treated with the GnRH antagonist Nal-Glu (i.m., 500 microgram/kg). Circulating levels of LH were determined 22 h after antagonist treatment. In peripubertal animals, circulating levels of LH were similar between morning and evening assessments. However, pulse frequency was significantly lower during the daytime. GnRH antagonist reduced LH levels by 72% and a similar reduction in response to an exogenous GnRH test stimulus occurred. These findings suggest an apulsatile mode of GnRH release.


2020 ◽  
Vol 19 (9) ◽  
pp. 676-690 ◽  
Author(s):  
Roma Ghai ◽  
Kandasamy Nagarajan ◽  
Meenakshi Arora ◽  
Parul Grover ◽  
Nazakat Ali ◽  
...  

Alzheimer’s Disease (AD) is a chronic, devastating dysfunction of neurons in the brain leading to dementia. It mainly arises due to neuronal injury in the cerebral cortex and hippocampus area of the brain and is clinically manifested as a progressive mental failure, disordered cognitive functions, personality changes, reduced verbal fluency and impairment of speech. The pathology behind AD is the formation of intraneuronal fibrillary tangles, deposition of amyloid plaque and decline in choline acetyltransferase and loss of cholinergic neurons. Tragically, the disease cannot be cured, but its progression can be halted. Various cholinesterase inhibitors available in the market like Tacrine, Donepezil, Galantamine, Rivastigmine, etc. are being used to manage the symptoms of Alzheimer’s disease. The paper’s objective is to throw light not only on the cellular/genetic basis of the disease, but also on the current trends and various strategies of treatment including the use of phytopharmaceuticals and nutraceuticals. Enormous literature survey was conducted and published articles of PubMed, Scifinder, Google Scholar, Clinical Trials.org and Alzheimer Association reports were studied intensively to consolidate the information on the strategies available to combat Alzheimer’s disease. Currently, several strategies are being investigated for the treatment of Alzheimer’s disease. Immunotherapies targeting amyloid-beta plaques, tau protein and neural pathways are undergoing clinical trials. Moreover, antisense oligonucleotide methodologies are being approached as therapies for its management. Phytopharmaceuticals and nutraceuticals are also gaining attention in overcoming the symptoms related to AD. The present review article concludes that novel and traditional therapies simultaneously promise future hope for AD treatment.


1991 ◽  
Vol 131 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Q. Dong ◽  
R. M. Lazarus ◽  
L. S. Wong ◽  
M. Vellios ◽  
D. J. Handelsman

ABSTRACT This study aimed to determine the effect of streptozotocin (STZ)-induced diabetes on pulsatile LH secretion in the mature male rat. LH pulse frequency was reduced by 56% and pulse amplitude by 54%, with a consequential decrease of 72% in mean LH levels 8 days after i.v. administration of STZ (55 mg/kg) to castrated Wistar rats compared with castrated non-diabetic controls. Twice daily insulin treatment completely reversed all parameters of pulsatile LH secretion to control values. Food-restricted non-diabetic controls, studied to distinguish the metabolic effect of diabetes from that of concurrent weight loss, demonstrated a 34% reduction in LH pulse frequency but no significant changes in LH pulse amplitude or mean LH levels compared with non-diabetic controls given free access to food. To distinguish whether the decreased LH pulse amplitude in diabetes was due to a reduction in either the quantity of hypothalamic gonadotrophin-releasing hormone (GnRH) released per secretory episode or to decreased pituitary responsiveness to GnRH, the responsiveness of the pituitary to exogenous GnRH (1–1000 ng/kg body weight) was tested in diabetic rats after castration, using a full Latin square experimental design. The net LH response (total area under response curve over 40 min following GnRH) was decreased by 33% (P=0·001) in diabetic compared with control rats. The decreased LH pulse frequency in STZ-induced diabetes therefore suggests that the metabolic effect of diabetes is to decelerate directly the firing rate of the hypothalamic GnRH pulse generator independent of testicular feed-back. These effects were fully reversed by insulin treatment and were only partly due to the associated weight loss. The impaired pituitary responsiveness to GnRH is at least partly involved in the reduction of LH pulse amplitude. Journal of Endocrinology (1991) 131, 49–55


1986 ◽  
Vol 250 (5) ◽  
pp. R803-R806 ◽  
Author(s):  
S. T. Shih ◽  
O. Khorram ◽  
J. M. Lipton ◽  
S. M. McCann

alpha-Melanocyte-stimulating hormone (alpha-MSH) has a marked antipyretic action when given centrally or peripherally, and the concentration of this peptide within the septal region of the brain increases during fever. To assess the significance of endogenous central alpha-MSH in fever, antiserum was given to rabbits via a cannula implanted in the third cerebral ventricle. Each day for 3 days, the animals received 50 microliters of normal rabbit serum (NRS) or an equal volume of antiserum raised against alpha-MSH. Interleukin 1 (IL 1) was then injected intravenously to determine the effect of central immunoneutralization of alpha-MSH on the febrile response. Immunoneutralization markedly prolonged fever. The average rise in temperature and the area under the fever curve after IL 1 injection were also significantly increased. Antiserum treatment did not alter normal body temperature, and NRS had no effect on IL 1-induced fever. These results indicate that endogenous central alpha-MSH contributes to physiological limitation of fever and that the role of this peptide in temperature regulation is relevant to the febrile state but not to normothermia.


2017 ◽  
Vol 39 (2) ◽  
pp. 98-105 ◽  
Author(s):  
Paula Madeira Fortes ◽  
Lucas Albrechet-Souza ◽  
Mailton Vasconcelos ◽  
Bruna Maria Ascoli ◽  
Ana Paula Menegolla ◽  
...  

Abstract Introduction: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. Objectives: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Methods: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Results: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Conclusion: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.


2004 ◽  
Vol 181 (2) ◽  
pp. 291-296 ◽  
Author(s):  
J Lesage ◽  
F Del-Favero ◽  
M Leonhardt ◽  
H Louvart ◽  
S Maccari ◽  
...  

There is growing evidence that prenatal adversities could be implicated in foetal programming of adult chronic diseases. Since maternal stress is known to disturb the foetal glucocorticoid environment, we examined the consequences of prenatal stress on foetal growth, on glucose-insulin metabolism and on feeding behaviour in the aged male rat. In foetuses at term, maternal stress reduced body, adrenal and pancreas weight as well as plasma corticosterone and glucose levels. In aged male rats (24 months of age), prenatal stress induced hyperglycaemia and glucose intolerance and decreased basal leptin levels. Moreover, after a fasting period, they showed an increased food intake. These data suggest that maternal stress induces a long-lasting disturbance in feeding behaviour and dysfunctions related to type 2 diabetes mellitus. This programming could be linked to the early restricted foetal growth and to the adverse glucocorticoid environment in utero.


Sign in / Sign up

Export Citation Format

Share Document