scholarly journals SUN-LB40 Chronic Cortisol Works Through the Transcription Factor KLF9 to Deregulate Immune Response and Metabolism

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Ian M Gans ◽  
Ellen I Hartig ◽  
Andrea R Tilden ◽  
Joel H Graber ◽  
James Coffman

Abstract Chronically elevated levels of glucocorticoids (GC) are associated with a number of disease states and negative side effects, including metabolic syndrome. Epidemiological studies show that elevated GC during a brief but vulnerable developmental window can have life-long and potentially multi-generational impacts on health. To elucidate underlying pathogenic mechanisms, our lab has used chronic treatment with a physiological dosage of cortisol (CORT) in developing zebrafish, Danio rerio, a model organism that has emerged as a useful tool for investigating GC signaling. In this paradigm, we have found evidence that high CORT during development alters a set point for the HPA axis and leads to continuous induction of aberrant GC production and transport, accompanied by altered immune gene regulation and decreased ability to maintain blood glucose homeostasis. To identify molecular and genetic pathways perturbed by chronic CORT treatment, we used CRISPR to generate mutant lines lacking the glucocorticoid receptor (GR) or the transcription factor Klf9, which we have found to be an important target/regulator of GC signaling. We performed RNA sequencing in these mutant lines and compared the transcriptomes of wild type (WT) and mutant animals treated with either chronic CORT or vehicle control (VEH). A broad overview of the data shows similarities between CORT treated wild-type fish and VEH treated GR mutants suggestive of GC resistance in the CORT treated WT animals. In Klf9 mutants, a number of genes involved in immune processes that were upregulated by chronic CORT in WT animals were not similarly upregulated, suggesting that Klf9 is an important feed-forward mediator of immune gene regulation by GC. Additionally, CORT increased expression of a number of metabolic genes in Klf9 mutants that were not similarly upregulated in WT, suggesting that Klf9 plays a regulatory role in the response of cellular metabolism to GC. To further investigate Klf9’s role in governing cellular metabolism, metabolic rate assays were performed on live animals. The results show that Klf9 mutants have lower total respiration, and that chronic CORT increases non-mitochondrial respiration in both WT and Klf9 mutants. Mitochondrial respiratory capacity was unaffected across conditions. This, coupled with gene expression data, suggests that measured metabolic differences are due to shifts in substrate usage and differential reliance on non-mitochondrial metabolic pathways such as glycolsis and peroxisomal beta-oxidation. Additional studies are required, but the regulation of glycolysis by Klf9 could contribute to this gene’s known tumor-suppresive role, and regulation of peroxisomal metabolism—key in immune cells—could partially explain the role of Klf9 in mediating these cells’ responsiveness to CORT.

Pneumologie ◽  
2012 ◽  
Vol 66 (11) ◽  
Author(s):  
K Hoehne ◽  
H Eibel ◽  
M Grimm ◽  
M Idzko ◽  
J Müller-Quernheim ◽  
...  

2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


2014 ◽  
Vol 80 (8) ◽  
pp. 2410-2416 ◽  
Author(s):  
Areen Banerjee ◽  
Ching Leang ◽  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACTThe development of tools for genetic manipulation ofClostridium ljungdahliihas increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox forC. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported forClostridium perfringens, was investigated. The plasmid pAH2, originally developed forC. perfringenswith agusAreporter gene, functioned as an effective lactose-inducible system inC. ljungdahlii. Lactose induction ofC. ljungdahliicontaining pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression ofadhE130-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression ofadhE1in a strain in whichadhE1and theadhE1homologadhE2had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression ofadhE2similarly failed to restore ethanol production, suggesting thatadhE1is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.


2008 ◽  
Vol 190 (19) ◽  
pp. 6398-6408 ◽  
Author(s):  
Torsten Sterzenbach ◽  
Lucie Bartonickova ◽  
Wiebke Behrens ◽  
Birgit Brenneke ◽  
Jessika Schulze ◽  
...  

ABSTRACT The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.


1991 ◽  
Vol 11 (7) ◽  
pp. 3676-3681
Author(s):  
W M Yang ◽  
W Gahl ◽  
D Hamer

The induction of Saccharomyces cerevisiae metallothionein gene transcription by Cu and Ag is mediated by the ACE1 transcription factor. In an effort to detect additional stimuli and factors that regulate metallothionein gene transcription, we isolated a Cu-resistant suppressor mutant of an ACE1 deletion strain. Even in the absence of metals, the suppressor mutant exhibited high basal levels of metallothionein gene transcription that required upstream promoter sequences. The suppressor gene was cloned, and its predicted product was shown to correspond to yeast heat shock transcription factor with a single-amino-acid substitution in the DNA-binding domain. The mutant heat shock factor bound strongly to metallothionein gene upstream promoter sequences, whereas wild-type heat shock factor interacted weakly with the same region. Heat treatment led to a slight but reproducible induction of metallothionein gene expression in both wild-type and suppressor strains, and Cd induced transcription in the mutant strain. These studies provide evidence for multiple pathways of metallothionein gene transcriptional regulation in S. cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document